Skip to main content
Log in

The Induction of a Depression-Like State by Chronic Exposure to Ultrasound in Rats Is Accompanied by a Reduction in Gene Expression of GABAA-Receptor Subunits in the Brain

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—We studied quantitative changes in the components of GABAergic system in Sprague–Dawley rats using an ultrasound model of a depression-like state induced by chronic action of randomly alternating ultrasonic frequencies of 20–45 kHz. We measured expression of the GABRA1, GABRA2, GABRA3, and GABRB2 genes coding the α1, α2, α3, and β2 subunits of GABAA-receptors, respectively, in the hippocampus, prefrontal cortex, mesencephalon, and amygdala after one, two, and three weeks of stress. The levels of relative expression of GABRA1, GABRA2, and GABRA3 genes decreased to a various extent in different brain structures depending on the duration of ultrasound exposure. Reduced relative expression of GABRA1 and GABRA3 genes was found after one week of chronic exposure to ultrasound, while the decrease in relative expression of GABRA2 was seen only after three weeks. The relative expression of GABRB2 remained unchanged. Thus, for the first time, we studied the dynamics of gene expression of GABAA-receptor subunits accompanying different stages of the development of a depression-like state in rats; this helped to reveal the relation between the detected changes and the duration of exposure to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kessler, R., Aguilar-Gaxiola, S., Alonso, J., Chatterji, S., Lee, S., Ormel, J., Ustun, B., and Wang, P., Epidemiol. Psichiatr. Soc., 2009, vol. 18, pp. 23–33.

  2. Grigor’yan, G.A. and Gulyaeva, N.V., Vyssh. Nervn. Deyat.im.I.P. Pavlova, 2015, vol. 65, no. 6, pp. 643–660.

    Google Scholar 

  3. Duman, C.H., Vitam. Horm., 2010, vol. 82, pp. 1–21.

    Article  Google Scholar 

  4. Morozova, A., Zubkov, E., Strekalova, T., Kekelidze, Z., Storozeva, Z., Schroeter, C.A., Lesch, K.P., Cline, B.H., and Chekhonin, V., Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, vol. 68, pp. 52–63.

    Article  Google Scholar 

  5. Gorlova, A.V., Pavlov, D.A., Ushakova, V.M., Zubkov, E.A., Morozova, A.Yu., Inozemtsev, A.N., and Chekhonin, V.P., Byull. Eksp. Biol. i Med., 2017, vol. 163, no. 3, pp. 271–274.

    Google Scholar 

  6. Brudzynski, S., Behav. Brain Res., 2007, vol. 182, pp. 261–273.

  7. Litvin, Y., Blanchard, C., and Blanchard, R., Behav. Brain Res., 2007, vol. 182, pp. 166–172.

  8. Morozova, A.Yu., Zubkov, E.A., Storozheva, Z.I., Kekelidze, Z.I., and Chekhonin, V.P. Byull. Eksp. Biol. i Med., 2012, vol. 154, no. 12, pp. 705–708.

    Google Scholar 

  9. Mansari, M., Guiard, B., Chernoloz, O., Ghanbari, R., Katz, N., and Blier, P., CNS Neurosci. Ther., 2010, vol. 16, pp. 1–17.

    Article  Google Scholar 

  10. Olsen, R.W. and Sieghart, W., Neuropharmacology, 2009, vol. 56, pp. 141–148.

    Article  CAS  Google Scholar 

  11. Gunther, U., Benson, J., Benke, D., Fritschy, J.M., Reyes, G., Knoflach, F., Crestani, F., Aguzzi, A., Arigoni, M., Lang, Y., Bluethmann, H., Mohler, H., and Luscher, B., Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 7749–7753.

    Article  CAS  Google Scholar 

  12. Fatemi, S.H., Folsom, T.D., Rooney, R.J., and Thuras, P.D., Transl. Psychiatry, 2013. https://doi.org/10.1038/tp.2013.46

  13. Smith, K.S. and Rudolph, U., Neuropharmacology, 2012, vol. 62, pp. 54–62.

    Article  CAS  Google Scholar 

  14. Sapolsky, R., Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 12320–12322.

  15. Coryell, W., Nopoulos, P., Drevets, W., and Andreasen, N., American Journal of Psychiatry, 2005, vol. 162, pp. P. 1706–1712.

  16. Hamilton, J., Siemer, M., and Gotlib, I., Mol. Psychiatry, 2008, vol. 13, pp. 993–1000.

    Article  CAS  Google Scholar 

  17. Pavlov, D., Bettendorff, L., Gorlova, A., Olkhovik, A., Kalueff, A., Ponomarev, E., Inozemtsev, A., Chekhonin, V., Lesch, K.P., Anthony, D.C., and Strekalova, T., Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, vol. 90, pp. 104–116.

    Article  Google Scholar 

  18. Livak, K.J. and Schmittgen, T.D., Methods, 2001, vol. 25, pp. 402–408.

    Article  CAS  Google Scholar 

  19. Shen, Q., Lal, R., Luellen, B.A., Earnheart, J.C., Andrews, A.M., and Luscher, B., Biological Psychiatry, 2010, vol. 68, pp. 512–520.

    Article  CAS  Google Scholar 

  20. Earnheart, J.C., Schweizer, C., Crestani, F., Iwasato, T., Itohara, S., Mohler, H., and Luscher, B., J. Neurosci., 2007, vol. 27, pp. 3845–3854.

    Article  CAS  Google Scholar 

  21. Castagne, V., Moser, P., and Porsolt, R.D., Methods of Behavior Analysis in Neuroscience, 2nd ed., CRC Press/Taylor & Francis, 2009.

  22. Slattery, D.A. and Cryan, J.F., Nature Protocols, 2012, vol. 7, pp. 1009–1014.

    Article  CAS  Google Scholar 

  23. Molendijk, M. and de Kloet, E.R., Behav. Brain Res., 2019, vol. 365, pp. 1–10.

    Article  Google Scholar 

  24. Moreau, J., Dialogues Clin. Neurosci., 2002, vol. 4, pp. 351–360.

    PubMed  PubMed Central  Google Scholar 

  25. Overstreet, D.H., Modeling Depression in Animal Models,Methods Mol. Biol., 2012, vol. 829, pp. 125–144.

    Article  CAS  Google Scholar 

  26. Maguire, J., Front Cell Neurosci., 2014, vol. 8, pp. 157–169.

    Article  Google Scholar 

  27. Verkuyl, J.M., Hemby, S.E., and Joels, M., Eur. J Neurosci., 2004, vol. 20, pp. 1665–1673.

    Article  Google Scholar 

  28. Rocha, L., Alonso-Vanegas, M., Martínez-Juárez, I.E., Orozco-Suárez, S., Escalante-Santiago, D., Feria-Romero, I.A., Zavala-Tecuapetla, C., Cisneros-Franco, J.M., Buentello-García, R.M., and Cienfuegos, J., Front. Cell Neurosci., 2015, vol. 8, p. 442.

    Article  Google Scholar 

Download references

Funding

No external funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gorlova.

Ethics declarations

Conflict of interests. The authors declared that they have no conflict of interest.

Ethical approval. Animal management and all experimental procedures were conducted in accordance with the international guidelines for the care of animals (European Union Directive 2010/63, September 22, 2010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorlova, A.V., Pavlov, D.A., Ushakova, V.M. et al. The Induction of a Depression-Like State by Chronic Exposure to Ultrasound in Rats Is Accompanied by a Reduction in Gene Expression of GABAA-Receptor Subunits in the Brain. Neurochem. J. 14, 49–54 (2020). https://doi.org/10.1134/S1819712420010080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712420010080

Keywords:

Navigation