Skip to main content
Log in

Development of Some Properties of a Thermophilic Recombinant Glucose Isomerase by Mutation

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Site-directed mutagenesis was made to obtain a glucose isomerase (GI) working at high temperatures and low pH values and having high affinity to the substrate and more pH and termal stability in comparison with the native enzyme. For this purpose, GI gene from Geobacillus caldoxylosilyticus TK4 was cloned to pET-28a(+) vector and H99Q, V184T and D102N mutations were performed. Biochemical features of the recombinant and mutant enzymes were identified. These mutations enabled the mutant enzymes to increase the optimum temperature and KM and decrease the optimum pH and Vmax values of the reaction. Furthermore, the mutant proteins had more thermal and pH stability than that of the recombinant GI. The mutant enzymes showed the highest activities in the presence of Co2+, Cu2+ and Mn2+ and were more resistant to some metals than the recombinant GI. In conclusion, the site-directed mutations led to improve the performance of the recombinant enzyme, which means that the mutant enzyme (TK4GI mutation) may be practicable in high fructose corn syrup production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Fatima, B., Aftab, M.N., and Haq, I.U., J. Basic Microbiol., 2016, vol. 56, pp. 949–962.

    Article  CAS  Google Scholar 

  2. Hartley, B.S., Hanlon, N., Jackson, R.J., and Rangarajan, M., BBA–Protein Struct. M., 2000, vol. 1543, pp. 294–335.

  3. Bhosale, S.H., Rao, M.B., and Deshpande, V.V., Microbiol. Rev., 1996, vol. 60, pp. 280–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown, S.H., Sjøholm, C., and Kelly, R.M., Biotechnol. Bioeng., 1993, vol. 41, pp. 878–886.

    Article  CAS  Google Scholar 

  5. Enzymes and Food Processing, Birch, G. G., Blackebrough, N., and Parker, J. K., Eds., London: Applied Science Publishers Ltd., 1981, pp. 51–72.

    Google Scholar 

  6. Kaneko, T., Takahashi, S., and Saito, K., Biosci. Biotechnol. Biochem., 2000, vol. 64, pp. 940–947.

    Article  CAS  Google Scholar 

  7. Jeffries, T.W., Grigoriev, I.V., Grimwood, J., Laplaza, J.M., Aerts, A., Salamov, A., et al., Nat. Biotechnol., 2007, vol. 25, no. 3, pp. 319.

    Article  CAS  Google Scholar 

  8. Lajoie, C.A., Kitner, J.B., Potochnik, S.J., Townsend, J.M., Beatty, C.C., and Kelly, C.J., Biotechnol. Progr., 2016, vol. 32, no. 5, pp. 1230–1237.

    Article  CAS  Google Scholar 

  9. Joo, G.-J., Shin, J.-H., Heo, G.-Y., Kim, Y.-M., and Rhee, I.-K., J. Microbiol., 2005, vol. 43, no. 1, pp. 34–37.

    CAS  PubMed  Google Scholar 

  10. Silva, C., Zangirolami, T., Rodrigues, J., Matugi, K., Giordano, R., and Giordano, R., Enzyme Microb. Technol., 2012, vol. 50, no. 1, pp. 35–42.

    Article  CAS  Google Scholar 

  11. Li, W., Zhou, X., and Lu, P., Biotechnol. Adv., 2005, vol. 23, pp. 271–281.

    Article  CAS  Google Scholar 

  12. Cha, J. and Batt, C.A., Mol. Cell., 1998, vol. 8, pp. 374–382.

    CAS  Google Scholar 

  13. Sriprapundh, D., Vieille, C., and Zeikus, J.G., Protein Eng., 2000, vol. 13, pp. 259–265.

    Article  CAS  Google Scholar 

  14. Tsutakawa, S.E., Hura, G.L., Frankel, K.A., Cooper, P.K., and Tainer, J.A., J. Struct. Biol., 2007, vol. 158, pp. 214–223.

    Article  CAS  Google Scholar 

  15. Dülger, S. Isolation, Characterization with Molecular Methods and Description of Thermophilic Bacteria from Çönen, Kestanbol and Diyadin Hot Springs,K.T.U., Trabzon, 2003.

    Google Scholar 

  16. Faiz, O., Colak, A., Kolcuoglu, Y., and Ertunga, N.S., Turk. J. Biochem., 2011, vol. 36, pp. 6–14.

    CAS  Google Scholar 

  17. Dische, Z. and Borenfreund, E., J. Biol. Chem., 1951, vol. 192, pp. 583–587.

    CAS  PubMed  Google Scholar 

  18. Oz Tuncay, F., Colak, A., Yildirim Akatin, M., Kolcuoglu, Y., Saglam Ertunga, N., and Dokuzparmak, C., Rev. Roum. Chim., 2019, vol. 64, no. 1, pp. 73–82.

    Article  Google Scholar 

  19. Vieille, C., Epting, K.L., Kelly, R.M., and Zeikus, J.G., Eur. J. Biochem., 2001, vol. 268, pp. 6291–6301.

    Article  CAS  Google Scholar 

  20. Kovalevsky, A.Y., Hanson, L., Fisher, S.Z., Mustyakimov, M., Mason, S.A., Forsyth, V.T., et al., Structure, 2010, no. 6, pp. 688–699.

  21. Lee, C., Bagdasarian, M., Meng, M., and Zeikus, J., J. Biol. Chem., 1990, vol. 265, pp. 19082–19090.

    CAS  PubMed  Google Scholar 

  22. Xu, H., Shen, D., Wu, X.-Q., Liu, Z.-W., and Yang, Q.-H., J. Ind. Microbiol. Biotechnol., 2014, vol. 41, pp. 1581–1589.

    Article  CAS  Google Scholar 

  23. Karaoglu, H., Yanmis, D., Sal, F.A., Celik, A., Canakci, S., and Belduz, A.O., J. Mol. Catal., B: Enzym., 2013, vol. 97, pp. 215–224.

    Article  CAS  Google Scholar 

  24. Van Bastelaere, P., Kersters-Hilderson, H., and Lambeir, A., Biochem. J., 1995, vol. 307, pp. 135–142.

    Article  CAS  Google Scholar 

  25. Liu, S.-Y., Wiegel, J., and Gherardini, F.C., J. Bacteriol., 1996, vol. 178, pp. 5938–5945.

    Article  CAS  Google Scholar 

  26. Tewari, Y. and Goldberg, R.N., Appl. Biochem. Biotechnol., 1985, vol. 11, pp. 17–24.

    Article  CAS  Google Scholar 

  27. Zhu, G.P., Xu, C., Teng, M.K., Tao, L.M., Zhu, X.Y., Wu, C.J., et al., Protein Eng., 1999, vol. 12, pp. 635–638.

    Article  CAS  Google Scholar 

  28. Meng, M., Lee, C., Bagdasarian, M., and Zeikus, J.G., Proc. Natl. Acad. Sci. U. S. A., 1991, vol. 88, pp. 4015–4019.

    Article  CAS  Google Scholar 

  29. Suekane, M., Tamura, M., and Tomimura, C., Agric. Biol. Chem., 1978, vol. 42, pp. 909–917.

    CAS  Google Scholar 

  30. Borgi, M.A., Srih-Belguith, K., Ali, M.B., Mezghani, M., Tranier, S., Haser, R., and Bejar, S., Biochimie, 2004, vol. 86, pp. 561–568.

    Article  CAS  Google Scholar 

  31. Hlima, H.B., Aghajari, N., Ali, M.B., Haser, R., and Bejar, S., J. Ind. Microbiol. Biotechnol., 2012, vol. 39, pp. 537–546.

    Article  Google Scholar 

  32. Jia, D.-X., Zhou, L., and Zheng, Y.-G., Enzyme Microb. Technol., 2017, vol. 99, pp. 1–8.

    Article  CAS  Google Scholar 

  33. Kasumi, T., Mori, S., Kaneko, S., and Koyama, Y., J. Appl. Glycosci., 2011, vol. 59, pp. 43–46.

    Article  Google Scholar 

  34. Lee, C. and Zeikus, J., Biochem. J., 1991, vol. 273, pp. 565–571.

    Article  CAS  Google Scholar 

  35. Lee, C., Saha, B.C., and Zeikus, J.G., Appl. Environ. Microbiol., 1990, vol. 56, pp. 2895–2901.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Scientific and Research Council of Turkey (TUBITAK) [no. 109T985].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Colak.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokuzparmak, C., Colak, A., Kolcuoglu, Y. et al. Development of Some Properties of a Thermophilic Recombinant Glucose Isomerase by Mutation. Appl Biochem Microbiol 56, 164–172 (2020). https://doi.org/10.1134/S0003683820020052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820020052

Keywords:

Navigation