Skip to main content
Log in

Effect of Azospirillum Lectins on the Ascorbate Peroxidase Activity and Ascorbic Acid Content in Wheat Seedling Roots Exposed to Abiotic Stresses

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

We examined the effect of lectins from two Azospirillum strains (the epiphyte A.brasilense Sp7 and the endophyte A. brasilense Sp245) on the ascorbate peroxidase activity and ascorbic acid content in roots of etiolated wheat (Triticum aestivum L.) seedlings under simulated abiotic stresses: hypothermic (5°С) and hyperthermic (42°С) stress, salinity (1% NaCl), drought (5% sucrose), and heavy metal toxicity (CoSO4, ZnSO4, Pb(CH3COO)2, and CuSO4). Both lectins increased ascorbate peroxidase activity and ascorbate content in stressed seedling roots. Based on the obtained data, we propose that the antioxidant action of the Azospirillum lectins underlies the protective effect of these proteins toward wheat seedling roots subjected to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Sorty, A.M., Meena, K.K., Choudhary, K., Bitla, U.M., Minhas, P.S., and Krishnani, K.K., Appl. Biochem. Biotechnol., 2016, vol. 180, no. 5, pp. 872–882.

    Article  CAS  Google Scholar 

  2. Sahoo, R.K., Ansari, M.W., Pradhan, M., Dangar, T.K., Mohanty, S., and Tuteja, N., Plant Signal. Behav., 2014, vol. 9. e29377.

    Article  Google Scholar 

  3. Arzanesh, M.H., Alikhani, H.A., Khavazi, K., Rahimian, H.A., and Miransari, M., Int. J. Bot., 2009, vol. 5, no. 3, pp. 244–249.

    Article  Google Scholar 

  4. Pereyra, M.A., Zalazar, C.A., and Barassia, C.A., Plant Physiol. Biochem., 2006, vol. 44, nos. 11–12, pp. 873–879.

    Article  CAS  Google Scholar 

  5. Omar, M.N.A., Osman, M.E.H., Kasim, W.A., and Abd El-Daim, I.A., Tasks Veg. Sci., 2009, vol. 44, pp. 133–147.

    Article  Google Scholar 

  6. Baldani, J.I. and Baldani, V.L.D., An. Acad. Bras. Cienc., 2005, vol. 77, no. 3, pp. 549–579.

    Article  CAS  Google Scholar 

  7. Bashan, Y., Holguin, G., and Bashan, L.E., Can. J. Microbiol., 2004, vol. 50, pp. 521–577.

    Article  CAS  Google Scholar 

  8. Alen'kina, S.A., Payusova, O.A., and Nikitina, V.E., Plant Soil, 2006, vol. 283, nos 1–2, pp. 147–151.

    Article  CAS  Google Scholar 

  9. Schloter, M., Wiehe, W., Assmus, B., Steindl, H., Becke, H., Hoftich, G., and Hartmann, A., Appl. Environ. Microbiol., 1997, vol. 63, no. 5, pp. 2038–2046.

    Article  CAS  Google Scholar 

  10. Assmus, B., Hutzler, P., Kirchhof, G., Amann, R., Lawrence, J.R., and Hartmann, A., Appl. Environ. Microbiol., 1995, vol. 61, no. 3, pp. 1013–1019.

    Article  CAS  Google Scholar 

  11. Antonyuk, L.P. and Evseeva, N.V., Microbiology (Moscow), 2006, vol. 75, no. 4, pp. 470–475.

    Article  CAS  Google Scholar 

  12. Shakirova, F.M. and Bezrukova, M.V., Zh. Obshch. Biol., 2007, vol. 68, no. 2, pp. 98–114.

    Google Scholar 

  13. Nikitina, V.E., Alen’kina, S.A., Ponomareva, E.G., and Savenkova, N.N., Microbiology (Moscow), 1996, vol. 65, no. 2, pp. 144–148.

    Google Scholar 

  14. Castellanos, T., Ascencio, F., and Bashan, Y., Curr. Microbiol., 1998, vol. 36, no. 4, pp. 241–244.

    Article  CAS  Google Scholar 

  15. Nikitina, V.E., Ponomareva, E.G., and Alen’kina, S.A., Molekulyarnye osnovy vzaimootnoshenii assotsiativnykh mikroorganizmov s rasteniyami (Molecular Basis of the Relationships of Associative Microorganisms with Plants), I-gnatov, V.V., Ed., Moscow: Nauka, 2005.

    Google Scholar 

  16. Shelud'ko, A.V., Ponomareva, E.G., Varshalomidze, O.E., Vetchinkina, E.I., Katsy, E.I., and Nikitina, V.E., Microbiology (Moscow), 2009, vol. 78, no. 6, pp. 696–702.

    Article  CAS  Google Scholar 

  17. Nikitina, V.E., Bogomolova, N.V., Ponomareva, E.G., and Sokolov, O.I., Biol. Bull. (Moscow), 2004, vol. 31, no. 4, pp. 354–357.

    Article  Google Scholar 

  18. Chernysheva, M.P., Alen’kina, S.A., Nikitina, V.E., and Ignatov, V.V., Appl. Biochem. Microbiol., 2005, vol. 41, no. 4, pp. 390–393.

    Article  Google Scholar 

  19. Alen’kina, S.A. and Nikitina, V.E., Microbiology (Moscow), 2015, vol. 84, no. 5, pp. 630–635.

    Article  Google Scholar 

  20. Alen’kina, S.A. and Nikitina, V.E., J. Plant Regul., 2017, vol. 36, no. 2, pp. 522–527.

    Article  Google Scholar 

  21. Chen, Z. and Gallie, D., Plant Physiol., 2005, vol. 138, no. 3, pp. 1673–1689.

    Article  CAS  Google Scholar 

  22. Foyer, Ch.H. and Noctor, G., Plant Physiol., 2011, vol. 155, no. 1, pp. 2–18.

    Article  CAS  Google Scholar 

  23. Eltayeb, S., Staal, J.B., Kennes, J., Lamberts, H.G.P., and de Bie, R., BMC Musculoskeletal Disord., 2007, vol. 8, pp. 68–73.

    Article  Google Scholar 

  24. Foyer, C.H. and Noctor, G., Plant, Cell Environ., 2015, vol. 38, no. 2, pp. 239–239.

    Article  CAS  Google Scholar 

  25. Echdat, Y., Ofek, I., Yachow-Yan, Y., Sharon, N., and Mirelman, D., Biochem. Biophis. Res. Commun., 1978, vol. 85, no. 4, pp. 1551–1559.

    Article  Google Scholar 

  26. Bradford, M.M., Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.

    Article  CAS  Google Scholar 

  27. Gruznova, K.A., Agrokhimiya, 2016, no. 10, pp. 89–93.

  28. Nakano, Y. and Asada, K., Plant Cell Physiol., 1981, vol. 22, no. 5, pp. 867–880.

    CAS  Google Scholar 

  29. Bartolind, C.G., Yu., Gómez, F., Fernández, L., McIntosh, L., and Foyer, C.H., J. Exp. Bot., 2006, vol. 57, no. 8, pp. 1621–1631.

    Article  Google Scholar 

  30. Maevskaya, S.N. and Nikolaeva, M.K., Russ. J. Plant Physiol., 2013, vol. 60, no. 3, pp. 343–350.

    Article  CAS  Google Scholar 

  31. Ranieri, A., Castagna, A., and Soldatini, G.F., J. Plant Physiol., 2000, vol. 156, no. 2, pp. 266–271.

    Article  CAS  Google Scholar 

  32. Alen’kina, S.A., Matora, L.Yu., and Nikitina, V.E., Microbiology (Moscow), 2010, vol. 79, no. 6, pp. 853–855.

    Article  Google Scholar 

  33. Alen’kina, S.A., Bogatyrev, V.A., Matora, L.Yu., Sokolova, M.K., Chernysheva, M.P., Trutneva, K.A., and Nikitina, V.E., Plant Soil, 2014, vol. 381, no. 3, pp. 337–349.

    Article  Google Scholar 

  34. Alen’kina, S.A., Romanov, N.I., and Nikitina, V.E., Braz. J. Bot., 2018, vol. 41, no. 3, pp. 579–587.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Alen’kina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alen’kina, S.A., Nikitina, V.E. Effect of Azospirillum Lectins on the Ascorbate Peroxidase Activity and Ascorbic Acid Content in Wheat Seedling Roots Exposed to Abiotic Stresses. Appl Biochem Microbiol 56, 211–218 (2020). https://doi.org/10.1134/S0003683820020027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820020027

Keywords:

Navigation