Skip to main content

Advertisement

Log in

Rhizosphere bacteria are more strongly related to plant root traits than fungi in temperate montane forests: insights from closed and open forest patches along an elevational gradient

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Heterogeneous canopies in temperate montane forests affect microclimate and soil characteristics, with important effects on soil microbial communities and related processes. Here, we studied the interactions between plant root traits and soil bacterial and fungal communities in closed forest and open gaps in a mixed forest along an elevational gradient in the French Alps (1400, 1700 and 2000 m).

Methods

Samples were separated into three fractions (plant root, rhizosphere and bulk soil), to further investigate the influence of plant zones on microbial communities. Bacterial (16S) and fungal (ITS) biodiversity was determined using high throughput sequencing, along with standard measures of soil, litter and root traits.

Results

We found that (i) microbial community diversity was higher in gaps than in closed forest because of increased root trait diversity and density; (ii) open versus closed forest patches affected phylogenetic dispersion despite differences in elevations with phylogenetic clustering in closed forest; (iii) the interaction between root traits and microbial communities was stronger for rhizosphere and root fractions than for bulk soil and (iv) bacterial community composition was better explained by root traits than for fungi.

Conclusions

Our findings highlight the importance of open gaps versus closed forest patches and associated root traits affecting microbial community structure, particularly for bacterial assemblages that exhibited a stronger interaction with root traits than for fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aponte C, García LV, Marañón T (2013) Tree species effects on nutrient cycling and soil biota: a feedback mechanism favouring species coexistence. For Ecol Manag 309:36–46

    Google Scholar 

  • Bach LH, Grytnes J-A, Halvorsen R, Ohlson M (2010) Tree influence on soil microbial community structure. Soil Biol Biochem 42:1934–1943

    CAS  Google Scholar 

  • Bahram M, Polme S, Koljalg U, Zarre S, Tedersoo L (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol 193:465–473

    PubMed  Google Scholar 

  • Baldrian P (2017) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41:109–130

    CAS  PubMed  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699

    PubMed  Google Scholar 

  • Baumert VL, Vasilyeva NA, Vladimirov AA, Meier IC, Kögel-Knabner I, Mueller CW (2018) Root exudates induce soil macroaggregation facilitated by fungi in subsoil. Front Environ Sci 6:140. https://doi.org/10.3389/fenvs.2018.00140

  • Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 66:265–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brant JB, Myrold DD, Sulzman EW (2006) Root controls on soil microbial community structure in forest soils. Oecologia 148:650–659

    PubMed  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Google Scholar 

  • Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. PNAS 105:11505–11511

    CAS  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    CAS  PubMed  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch Philipp C, Weiman A, Dröge J, Pan Y, McHardy Alice C, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    CAS  PubMed  Google Scholar 

  • Chenu C, Sotzky G (2002) Interactions between microorganisms and soil particles. In: Interactions between soil particles and microorganisms. Chemistry International -- Newsmagazine for IUPAC 24(4):26. https://doi.org/10.1515/ci.2002.24.4.26a

  • Coince A, Cordier T, Lengellé J, Defossez E, Vacher C, Robin C, Buée M, Marçais B (2014) Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS One 9:e100668

  • Colin Y, Nicolitch O, Van Nostrand JD, Zhou JZ, Turpault MP, Uroz S (2017) Taxonomic and functional shifts in the beech rhizosphere microbiome across a natural soil toposequence. Sci Rep 7:9604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins CG, Stajich JE, Weber SE, Pombubpa N, Diez JM (2018) Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient. Mol Ecol 27:2461–2476

  • de Freitas CR, Enright NJ (1995) Microclimatic differences between and within canopy gaps in a temperate rainforest. Int J Biometeorol 38:188–193

    Google Scholar 

  • de Graaff MA, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188:1055–1064

    PubMed  Google Scholar 

  • Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J Sediment Res 44:242–248

    CAS  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006a) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006b) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Google Scholar 

  • Dukunde A, Schneider D, Schmidt M, Veldkamp E, Daniel R (2019) Tree species shape soil bacterial community structure and function in temperate deciduous forests. Front Microbiol 10

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Google Scholar 

  • Gale WJ, Cambardella CA, Bailey TB (2000) Root-derived carbon and the formation and stabilization of aggregates. Soil Sci Soc Am J 64:201–207

    CAS  Google Scholar 

  • Goberna M, García C, Verdú M (2014a) A role for biotic filtering in driving phylogenetic clustering in soil bacterial communities. Glob Ecol Biogeogr 23:1346–1355

    Google Scholar 

  • Goberna M, Navarro-Cano JA, Valiente-Banuet A, García C, Verdú M (2014b) Abiotic stress tolerance and competition-related traits underlie phylogenetic clustering in soil bacterial communities. Ecol Lett 17:1191–1201

    PubMed  Google Scholar 

  • Gray AN, Spies TA, Easter MJ (2002) Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests. Can J For Res 32:332–343

    Google Scholar 

  • Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M, Kastl E, Arnoldi C, Bardgett RD, Poly F, Pommier T, Schloter M, Tappeiner U, Bahn M, Clément J-C (2013) Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J Ecol 101:47–57

    Google Scholar 

  • Gweon HS, Oliver A, Taylor J, Booth T, Gibbs M, Read DS, Griffiths RI, Schonrogge K (2015) PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol Evol 6:973–980

    PubMed  PubMed Central  Google Scholar 

  • Horner-Devine MC, Bohannan BJM (2006) Phylogenetic clustering and overdispersion in bacterial communities. Ecology 87:S100–S108

    PubMed  Google Scholar 

  • Hornung M (1985) Acidification of soils by trees and forests. Soil Use Manag 1:24–27

    CAS  Google Scholar 

  • Ihrmark K, Bodeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandstrom-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region--evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    CAS  PubMed  Google Scholar 

  • IWG W (2007) World reference base for soil resources 2006, first update 2007. FAO, Rome

    Google Scholar 

  • Jarvis SG, Woodward S, Taylor AF (2015) Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol 206:1145–1155

    CAS  PubMed  Google Scholar 

  • Jonard M, Nicolas M, Coomes DA, Caignet I, Saenger A, Ponette Q (2017) Forest soils in France are sequestering substantial amounts of carbon. Sci Total Environ 574:616–628

    CAS  PubMed  Google Scholar 

  • Joud D (2006) Guide pour identifier les stations forestières de Rhône-Alpes—Synthèse pour les Alpes du Nord et les montagnes de l’Ain. In: Rhône-Alpes C (ed). p 132

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    CAS  PubMed  Google Scholar 

  • Kernaghan G, Harper KA (2001) Community structure of ectomycorrhizal fungi across an alpine/subalpine ecotone. Ecography 24:181–188

    Google Scholar 

  • Kohout P, Charvátová M, Štursová M, Mašínová T, Tomšovský M, Baldrian P (2018) Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. ISME J 12(3):692–703. https://doi.org/10.1038/s41396-017-0027-3

  • Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Duenas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lucking R, Martin MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Poldmaa K, Saag L, Saar I, Schussler A, Scott JA, Senes C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    CAS  PubMed  Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    PubMed  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199

    CAS  Google Scholar 

  • Lareen A, Burton F, Schafer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Bissonnais Y (1996) Aggregate stability and assessment of soil crustability and erodibility: I. theory and methodology. Eur J Soil Sci 47:425–437

    Google Scholar 

  • Lehmann A, Zheng W, Rillig MC (2017) Soil biota contributions to soil aggregation. Nat Ecol Evol 1:1828–1835

  • Liu J, Ngoc Ha V, Shen Z, Dang P, Zhu H, Zhao F, Zhao Z (2018) Response of the rhizosphere microbial community to fine root and soil parameters following Robinia pseudoacacia L. afforestation. Appl Soil Ecol 132:11–19

  • Lladó S, López-Mondéjar R, Baldrian P (2018) Drivers of microbial community structure in forest soils. Appl Microbiol Biotechnol 102:4331–4338

    PubMed  Google Scholar 

  • Mao Z, Saint-André L, Genet M, Mine FX, Jourdan C, Rey H, Courbaud B, Stokes A (2012) Engineering ecological protection against landslides in diverse mountain forests: choosing cohesion models. Ecol Eng 45:55–69

    Google Scholar 

  • Mao Z, Jourdan C, Bonis M-L, Pailler F, Rey H, Saint-André L, Stokes A (2013) Modelling root demography in heterogeneous mountain forests and applications for slope stability analysis. Plant Soil 363:357–382

    CAS  Google Scholar 

  • Mao Z, Wang Y, Jourdan C, Cécillon L, Nespoulous J, Rey H, Saint-André L, Stokes A (2015) Characterizing above- and belowground carbon partitioning in forest trees along an altitudinal gradient using area-based indicators. Arct Antarct Alp Res 47:59–69

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    PubMed  Google Scholar 

  • McCain CM, Grytnes J-A (2010) Elevational gradients in species richness. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, ltd.

  • McCave IN, Bryant RJ, Cook HF, Coughanowr CA (1986) Evaluation of a laser-diffraction-size analyzer for use with natural sediments. J Sediment Res 56:561–564

    Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584

    Google Scholar 

  • Miyamoto Y, Nakano T, Hattori M, Nara K (2014) The mid-domain effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji, Japan. Isme J 8:1739–1746

    PubMed  PubMed Central  Google Scholar 

  • Muscolo A, Sidari M, Mercurio R (2007) Influence of gap size on organic matter decomposition, microbial biomass and nutrient cycle in Calabrian pine (Pinus laricio, Poiret) stands. For Ecol Manag 242:412–418

  • Muscolo A, Bagnato S, Sidari M, Mercurio R (2014) A review of the roles of forest canopy gaps. J For Res 25:725–736

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Vegan: community ecology package. R package version 2.4–0. https://CRAN.R-project.org/package=vegan. Accessed 10/12/2019

  • Olsen SR, Cole CV, Watanabe FS, Dean LA, United S, Department of A (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Dept. of Agriculture, Washington, D.C.

    Google Scholar 

  • Ostonen I, Truu M, Helmisaari HS, Lukac M, Borken W, Vanguelova E, Godbold DL, Lohmus K, Zang U, Tedersoo L, Preem JK, Rosenvald K, Aosaar J, Armolaitis K, Frey J, Kabral N, Kukumagi M, Leppalammi-Kujansuu J, Lindroos AJ, Merila P, Napa U, Nojd P, Parts K, Uri V, Varik M, Truu J (2017) Adaptive root foraging strategies along a boreal-temperate forest gradient. New Phytol 215:977–991

    CAS  PubMed  Google Scholar 

  • Parks DH, Beiko RG (2013) Measures of phylogenetic differentiation provide robust and complementary insights into microbial communities. ISME J 7:173–183

    CAS  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    CAS  PubMed  Google Scholar 

  • Poirier V, Roumet C, Angers DA, Munson AD (2018) Species and root traits impact macroaggregation in the rhizospheric soil of a Mediterranean common garden experiment. Plant Soil 424:289–302

    CAS  Google Scholar 

  • Prescott CE, Grayston SJ (2013) Tree species influence on microbial communities in litter and soil: current knowledge and research needs. For Ecol Manag 309:19–27

    Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    PubMed  PubMed Central  Google Scholar 

  • Prieto I, Roumet C, Cardinael R, Dupraz C, Jourdan C, Kim JH, Maeght JL, Mao Z, Pierret A, Portillo N, Roupsard O, Thammahacksa C, Stokes A (2015) Root functional parameters along a land-use gradient: evidence of a community-level economics spectrum. J Ecol 103:361–373

  • Ren C, Zhang W, Zhong Z, Han X, Yang G, Feng Y, Ren G (2018) Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Sci Total Environ 610-611:750–758

    CAS  PubMed  Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    PubMed  PubMed Central  Google Scholar 

  • RStudio Team (2016) RStudio: integrated development for R. RStudio Inc., Boston. http://www.rstudio.com/

  • Saetre P, Bååth E (2000) Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand. Soil Biol Biochem 32:909–917

    CAS  Google Scholar 

  • Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shea F, Watts CE (1939) Dumas method for organic nitrogen. Ind Eng Chem Anal Ed 11:333–334

    CAS  Google Scholar 

  • Shen C, Liang W, Shi Y, Lin X, Zhang H, Wu X, Xie G, Chain P, Grogan P, Chu H (2014) Contrasting elevational diversity patterns between eukaryotic soil microbes and plants. Ecology 95:3190–3202

    Google Scholar 

  • Shi S, O’Callaghan M, Jones EE, Richardson AE, Walter C, Stewart A, Condron L (2012) Investigation of organic anions in tree root exudates and rhizosphere microbial communities using in situ and destructive sampling techniques. Plant Soil 359:149–163

    CAS  Google Scholar 

  • Siles JA, Margesin R (2016) Abundance and diversity of bacterial, Archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors? Microb Ecol 72:207–220

  • Singh D, Takahashi K, Kim M, Chun J, Adams JM (2012) A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microb Ecol 63:429–437

    PubMed  Google Scholar 

  • Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    CAS  PubMed  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163

    CAS  Google Scholar 

  • Urbanová M, Šnajdr J, Baldrian P (2015) Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64

    Google Scholar 

  • Uren NC (2000) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface, Books in Soils, Plants, and the Environment Pinton R, Varanini Z and Nannipieri P eds., pp 1–21 CRC Press

  • Uroz S, Buée M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288

    CAS  PubMed  Google Scholar 

  • Uroz S, Oger P, Tisserand E, Cébron A, Turpault MP, Buée M, De Boer W, Leveau JHJ, Frey-Klett P (2016) Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci Rep 6:27756

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276

    Google Scholar 

  • Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. 2. A rapid method for the determination of fiber and lignin. J Assoc Off Agric Chem 46:829–835

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Soininen J, He J, Shen J (2012) Phylogenetic clustering increases with elevation for microbes. Environ Microbiol Rep 4:217–226

    PubMed  Google Scholar 

  • Wang Y, Kim JH, Mao Z, Ramel M, Pailler F, Perez J, Rey H, Tron S, Jourdan C, Stokes A (2018a) Tree root dynamics in montane and sub-alpine mixed forest patches. Ann Bot 122:861–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Mao Z, Bakker MR, Kim JH, Brancheriau L, Buatois B, Leclerc R, Selli L, Rey H, Jourdan C, Stokes A (2018b) Linking conifer root growth and production to soil temperature and carbon supply in temperate forests. Plant Soil 426:33–50

    CAS  Google Scholar 

  • Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155

    PubMed  Google Scholar 

  • Yang B, Pang X, Hu B, Bao W, Tian G (2017a) Does thinning-induced gap size result in altered soil microbial community in pine plantation in eastern Tibetan plateau? Ecol Evol 7:2986–2993

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Geng Y, Zhou H, Zhao G, Wang L (2017b) Effects of gaps in the forest canopy on soil microbial communities and enzyme activity in a Chinese pine forest. Pedobiologia 61:51–60

    Google Scholar 

  • Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30:614–620

    CAS  PubMed  Google Scholar 

  • Zhang Q, Goberna M, Liu Y, Cui M, Yang H, Sun Q, Insam H, Zhou J (2018) Competition and habitat filtering jointly explain phylogenetic structure of soil bacterial communities across elevational gradients. Environ Microbiol 20:2386–2396

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

LMM was funded with a Marie Curie IEF fellowship (FP7 European program, ref. 626666/2013). Funding for CFB was provided by the French and Mexican governments (ECOPICS project, ANR-16-CE03-0009 and CONACYT-273659). Many thanks to Hervé Rey (CIRAD, France), Francois Pailler (INRA France) and Patricia Tabernero for their help with field and laboratory work. Thanks are due to the Mairie de Chamrousse for access to fieldsites.

Author information

Authors and Affiliations

Authors

Contributions

LMM, RIG, AS, YLB designed, carried out the experimental research and analysed the data. HSG, CFB, AO carried out the experimental research and analysed the data. LMM, RIG, AS wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Luis Merino-Martín.

Additional information

Responsible Editor: Manuel Delgado-Baquerizo.

Highlights

• Interactions between microbial community structure and root traits were more intense in communities isolated from rhizosphere and root endosphere than from bulk soil.

• Bacterial community composition was better explained by root traits than in fungal communities.

• Microbial community diversity was higher in gaps than in closed forest because of increased root trait diversity and density.

• Gaps and closed forest influenced bacterial and fungal community structure.

• Phylogenetic diversity and dispersion were higher in gaps than in closed forest.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merino-Martín, L., Griffiths, R.I., Gweon, H.S. et al. Rhizosphere bacteria are more strongly related to plant root traits than fungi in temperate montane forests: insights from closed and open forest patches along an elevational gradient. Plant Soil 450, 183–200 (2020). https://doi.org/10.1007/s11104-020-04479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04479-3

Keywords

Navigation