Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The transition to compulsion in addiction

Abstract

Compulsion is a cardinal symptom of drug addiction (severe substance use disorder). However, compulsion is observed in only a small proportion of individuals who repeatedly seek and use addictive substances. Here, we integrate accounts of the neuropharmacological mechanisms that underlie the transition to compulsion with overarching learning theories, to outline how compulsion develops in addiction. Importantly, we emphasize the conceptual distinctions between compulsive drug-seeking behaviour and compulsive drug-taking behaviour (that is, use). In the latter, an individual cannot stop using a drug despite major negative consequences, possibly reflecting an imbalance in frontostriatal circuits that encode reward and aversion. By contrast, an individual may compulsively seek drugs (that is, persist in seeking drugs despite the negative consequences of doing so) when the neural systems that underlie habitual behaviour dominate goal-directed behavioural systems, and when executive control over this maladaptive behaviour is diminished. This distinction between different aspects of addiction may help to identify its neural substrates and new treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neural circuits engaged in drug seeking, drug taking and the transition to compulsion in addiction.
Fig. 2: Assessing compulsive drug-taking and drug-seeking behaviours in animal models.
Fig. 3: Circuits undergoing gain of function with oDASS.
Fig. 4: Two examples of the emergence of compulsion in rodents.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (American Psychiatric Association, 2013).

  2. Sanchis-Segura, C. & Spanagel, R. Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict. Biol. 11, 2–38 (2006).

    PubMed  Google Scholar 

  3. Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA 85, 5274–5278 (1988).

    PubMed  Google Scholar 

  4. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, H. et al. Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations. Neuron 97, 434–449 e434 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kelley, A. & Berridge, K. The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci. 22, 3306–3311 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Stuber, G. D. & Wise, R. A. Lateral hypothalamic circuits for feeding and reward. Nat. Neurosci. 19, 198–205 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Balleine, B. Neural bases of food-seeking: affect, arousal and reward in corticostriatolimbic circuits. Phys. Behav. 86, 717–730 (2005).

    CAS  Google Scholar 

  9. Naqvi, N., Rudrauf, D., Damasio, H. & Bechara, A. Damage to the insula disrupts addiction to cigarette smoking. Science 315, 531–534 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lüscher, C. & Ungless, M. The mechanistic classification of addictive drugs. PLoS Med. 3, e437 (2006).

    PubMed  PubMed Central  Google Scholar 

  11. Abrahao, K. P., Salinas, A. G. & Lovinger, D. M. Alcohol and the brain: neuronal molecular targets, synapses, and circuits. Neuron 96, 1223–1238 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Johnson, S. & North, R. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Corre, J. et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. eLife https://doi.org/10.7554/eLife.39945 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ettenberg, A., Pettit, H. O., Bloom, F. E. & Koob, G. F. Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology 78, 204–209 (1982).

    CAS  PubMed  Google Scholar 

  16. Pettit, H., Ettenberg, A., Bloom, F. & Koob, G. Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84, 167–173 (1984).

    CAS  PubMed  Google Scholar 

  17. Ting, A. K. R. & van der Kooy, D. The neurobiology of opiate motivation. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a012096 (2012).

    Article  Google Scholar 

  18. Daglish, M. R. et al. Brain dopamine response in human opioid addiction. Br. J. Psychiatry 193, 65–72 (2008).

    PubMed  Google Scholar 

  19. Nutt, D. J., Lingford-Hughes, A., Erritzoe, D. & Stokes, P. R. The dopamine theory of addiction: 40 years of highs and lows. Nat. Rev. Neurosci.16, 305–312 (2015).

    CAS  PubMed  Google Scholar 

  20. Saal, D., Dong, Y., Bonci, A. & Malenka, R. C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37, 577–582 (2003).

    CAS  PubMed  Google Scholar 

  21. Ungless, M. A., Whistler, J. L., Malenka, R. C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587 (2001). Original demonstration of drug-evoked synaptic plasticity in VTA dopamine neurons after a single injection of cocaine.

    CAS  PubMed  Google Scholar 

  22. Brown, M. T. et al. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation. PLoS One 5, e15870 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mameli, M. et al. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat. Neurosci. 12, 1036–1041 (2009).

    CAS  PubMed  Google Scholar 

  24. Pascoli, V. et al. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509, 459–464 (2014).

    CAS  PubMed  Google Scholar 

  25. Pascoli, V., Terrier, J., Hiver, A. & Lüscher, C. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88, 1054–1066 (2015).

    CAS  PubMed  Google Scholar 

  26. Terrier, J., Lüscher, C. & Pascoli, V. Cell-type specific insertion of GluA2-lacking AMPARs with cocaine exposure leading to sensitization, cue-induced seeking, and incubation of craving. Neuropsychopharmacology 41, 1779–1789 (2016).

    CAS  PubMed  Google Scholar 

  27. Koob, G. & Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24, 97–129 (2001).

    CAS  PubMed  Google Scholar 

  28. Koob, G. F. & Volkow, N. D. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3, 760–773 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Koob, G. Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology 56 (Suppl. 1), 18–31 (2009).

    CAS  PubMed  Google Scholar 

  30. Zhu, Y., Wienecke, C. F., Nachtrab, G. & Chen, X. A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530, 219–222 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Boulos, L. J. et al. Mu opioid receptors in the medial habenula contribute to naloxone aversion. Neuropsychopharmacology 45, 247–255 (2020).

    CAS  PubMed  Google Scholar 

  32. Boileau, I. et al. Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. Arch. Gen. Psychiatry 63, 1386–1395 (2006).

    CAS  PubMed  Google Scholar 

  33. Wong, D. et al. Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving. Neuropsychopharmacology 31, 2716–2727 (2006).

    CAS  PubMed  Google Scholar 

  34. Trifilieff, P., Ducrocq, F., van der Veldt, S. & Martinez, D. Blunted dopamine transmission in addiction: potential mechanisms and implications for behavior. Semin. Nucl. Med. 47, 64–74 (2017).

    PubMed  Google Scholar 

  35. Volkow, N. D. et al. Stimulant-induced dopamine increases are markedly blunted in active cocaine abusers. Mol. Psychiatry 19, 1037–1043 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Balleine, B. W. & O’Doherty, J. P. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48–69 (2010).

    PubMed  Google Scholar 

  37. Ersche, K. D. et al. Carrots and sticks fail to change behavior in cocaine addiction. Science 352, 1468–1471 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Voon, V. et al. Disorders of compulsivity: a common bias towards learning habits. Mol. Psychiatry 20, 345–352 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Luijten, M. et al. Goal-directed and habitual control in smokers. Nicotine Tob. Res. 22, 188–195 (2019).

    PubMed Central  Google Scholar 

  40. Sjoerds, Z. et al. Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Transl. Psychiatry 3, e337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ersche, K. D., Williams, G. B., Robbins, T. W. & Bullmore, E. T. Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Curr. Opin. Neurobiol. 23, 615–624 (2013).

    CAS  PubMed  Google Scholar 

  42. Everitt, B. J. & Robbins, T. W. Drug addiction: updating actions to habits to compulsions ten years on. Annu. Rev. Psychol. 67, 23–50 (2016).

    PubMed  Google Scholar 

  43. Goldstein, R. & Volkow, N. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am. J. Psychiatry 159, 1642–1652 (2002).

    PubMed  PubMed Central  Google Scholar 

  44. Ersche, K. et al. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 134, 2013–2024 (2011). Demonstration that neural mechanisms of impaired top-down inhibitory control in human stimulant addiction are pre-existing rather than caused by drug exposure.

    PubMed  PubMed Central  Google Scholar 

  45. Ersche, K. et al. Abnormal brain structure implicated in stimulant drug addiction. Science 335, 601–604 (2012).

    CAS  PubMed  Google Scholar 

  46. Anthony, J. C., Warner, L. A. & Kessler, R. C. Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey. Exp. Clin. Psychopharmacol. 2, 244–268 (1994).

    Google Scholar 

  47. Deroche-Gamonet, V., Belin, D. & Piazza, P. V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004). First demonstration of individual differences using an addiction model in rats.

    CAS  PubMed  Google Scholar 

  48. Pascoli, V. et al. Stochastic synaptic plasticity underlying compulsion in a model of addiction. Nature 564, 366–371 (2018). Demonstration of apparent ‘gain of function’ in orbitofrontal–striatal circuit mediating compulsive reward-related behaviour caused by selective optogenetic stimulation of VTA dopamine neurons.

    CAS  PubMed  Google Scholar 

  49. Kasanetz, F. et al. Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 328, 1709–1712 (2010).

    CAS  PubMed  Google Scholar 

  50. Hu, Y. Z. et al. Compulsive drug use is associated with imbalance of orbitofrontal- and prelimbic-striatal circuits in punishment-resistant individuals. Proc. Natl Acad. Sci. USA 116, 9066–9071 (2019).

    CAS  PubMed  Google Scholar 

  51. Augier, E. et al. A molecular mechanism for choosing alcohol over an alternative reward. Science 360, 1321–1326 (2018). Individual differences in choice preference for adulterated alcohol over saccharin predict subsequent compulsive drinking in rats and correlate with downregulation of GABAergic function in the central amygdala, relevant to parallel human studies of alcohol dependence.

    CAS  PubMed  Google Scholar 

  52. Siciliano, C. A. et al. A cortical-brainstem circuit predicts and governs compulsive alcohol drinking. Science 366, 1008–1012 (2019).

    CAS  PubMed  Google Scholar 

  53. Lee, H., Gallagher, M. & Holland, P. The central amygdala projection to the substantia nigra reflects prediction error information in appetitive conditioning. Learn. Mem. 17, 531–538 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Wall, N. R. et al. Complementary genetic targeting and monosynaptic input mapping reveal recruitment and refinement of distributed corticostriatal ensembles by cocaine. Neuron 104, 916–930 e915 (2019).

    CAS  PubMed  Google Scholar 

  55. Hirokawa, J., Vaughan, A., Masset, P., Ott, T. & Kepecs, A. Frontal cortex neuron types categorically encode single decision variables. Nature 576, 446–451 (2019).

    CAS  PubMed  Google Scholar 

  56. Whitelaw, R. B., Markou, A., Robbins, T. W. & Everitt, B. J. Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcement. Psychopharmacology 127, 213–224 (1996).

    CAS  PubMed  Google Scholar 

  57. Ito, R., Robbins, T. & Everitt, B. Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat. Neurosci. 7, 389–397 (2004).

    CAS  PubMed  Google Scholar 

  58. Di Ciano, P. & Everitt, B. J. Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J. Neurosci. 24, 7167–7173 (2004).

    PubMed  PubMed Central  Google Scholar 

  59. Cador, M., Robbins, T. W. & Everitt, B. J. Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Neuroscience 30, 77–86 (1989).

    CAS  PubMed  Google Scholar 

  60. Mcfarland, K. & Kalivas, P. The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J. Neurosci. 21, 8655–8663 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pickens, C. et al. Neurobiology of the incubation of drug craving. Trends Neurosci. 34, 411–420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pascoli, V., Turiault, M. & Lüscher, C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 481, 71–75 (2011). First demonstration that the reversal of drug-evoked synaptic potentiation abolishes adaptive behaviour.

    PubMed  Google Scholar 

  63. Shen, C. J. et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat. Med. 25, 337–349 (2019).

    CAS  PubMed  Google Scholar 

  64. Kim, J., Pignatelli, M., Xu, S., Itohara, S. & Tonegawa, S. Antagonistic negative and positive neurons of the basolateral amygdala. Nat. Neurosci. 19, 1636–1646 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489 (2005).

    CAS  PubMed  Google Scholar 

  66. Balleine, B., Liljeholm, M. & Ostlund, S. The integrative function of the basal ganglia in instrumental conditioning. Behav. Brain Res. 199, 43–52 (2009).

    PubMed  Google Scholar 

  67. Hilario, M. R. & Costa, R. M. High on habits. Front. Neurosci. 2, 208–217 (2008).

    PubMed  PubMed Central  Google Scholar 

  68. Gremel, C. M. et al. Endocannabinoid modulation of orbitostriatal circuits gates habit formation. Neuron 90, 1312–1324 (2016). Molecular basis of possible top-down prefrontal circuitry regulating habit formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Murray, J. E., Belin, D. & Everitt, B. J. Double dissociation of the dorsomedial and dorsolateral striatal control over the acquisition and performance of cocaine seeking. Neuropsychopharmacology 37, 2456–2466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Corbit, L., Nie, H. & Janak, P. Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol. Psychiatry 72, 389–395 (2012). Experimental evidence for the involvement of the dorsal striatum in alcohol-seeking behaviour.

    PubMed  PubMed Central  Google Scholar 

  71. Hellard, E. R. et al. Optogenetic control of alcohol-seeking behavior via the dorsomedial striatal circuit. Neuropharmacology 155, 89–97 (2019).

    Google Scholar 

  72. Ostlund, S. & Balleine, B. On habits and addiction: an associative analysis of compulsive drug seeking. Drug. Discov. Today Dis. Model. 5, 235–245 (2008).

    Google Scholar 

  73. Vollstadt-Klein, S. et al. Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction 105, 1741–1749 (2010).

    PubMed  Google Scholar 

  74. Zhou, A. et al. Cue reactivity in the ventral striatum characterizes heavy cannabis use, whereas reactivity in the dorsal striatum mediates dependent use. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 751–762 (2019).

    PubMed  Google Scholar 

  75. Volkow, N. D. et al. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J. Neurosci. 26, 6583–6588 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cuzon Carlson, V. C. et al. Synaptic and morphological neuroadaptations in the putamen associated with long-term, relapsing alcohol drinking in primates. Neuropsychopharmacology 36, 2513–2528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ito, R., Dalley, J., Robbins, T. & Everitt, B. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J. Neurosci. 22, 6247–6253 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Vanderschuren, L., Di Ciano, P. & Everitt, B. Involvement of the dorsal striatum in cue-controlled cocaine seeking. J. Neurosci. 25, 8665–8670 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hodebourg, R. et al. Heroin seeking becomes dependent on dorsal striatal dopaminergic mechanisms and can be decreased by N-acetylcysteine. Eur. J. Neurosci. 50, 2036–2044 (2019).

    PubMed  Google Scholar 

  80. Zapata, A., Minney, V. & Shippenberg, T. Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats. J. Neurosci. 30, 15457–15463 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Smith, R. J. & Laiks, L. S. Behavioral and neural mechanisms underlying habitual and compulsive drug seeking. Prog. Neuropsychopharmacol. Biol. Psychiatry 87, 11–21 (2018).

    PubMed  Google Scholar 

  82. Giuliano, C., Belin, D. & Everitt, B. J. Compulsive alcohol seeking results from a failure to disengage dorsolateral striatal control over behavior. J. Neurosci. 39, 1744–1754 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Everitt, B. J. & Robbins, T. W. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2013.02.010 (2013).

    Article  PubMed  Google Scholar 

  84. Haber, S., Fudge, J. & McFarland, N. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382 (2000). Groundbreaking neuroanatomical study providing an anatomical substrate for the transition to compulsive drug-seeking behaviour, based on discovery of a spiralling organization of striatal feed-forward circuitry.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ikemoto, S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res. Rev. 56, 27–78 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Belin, D. & Everitt, B. J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57, 432–441 (2008). A critical test of the relative roles of the ventral striatum and the dorsal striatum in the transition to compulsive drug-seeking behaviour.

    CAS  PubMed  Google Scholar 

  87. Willuhn, I., Burgeno, L. M., Everitt, B. J. & Phillips, P. E. Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. Proc. Natl Acad. Sci. USA 109, 20703–20708 (2012).

    CAS  PubMed  Google Scholar 

  88. Wouterlood, F. G. et al. Mesencephalic dopamine neurons interfacing the shell of nucleus accumbens and the dorsolateral striatum in the rat. J. Neurosci. Res. 96, 1518–1542 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bocklisch, C. et al. Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science 341, 1521–1525 (2013).

    CAS  PubMed  Google Scholar 

  90. Cardinal, R. The contribution of the amygdala, nucleus accumbens, and prefrontal cortex to emotion and motivated behaviour. Int. Congr. Ser. 1250, 347–370 (2003).

    Google Scholar 

  91. Corbit, L. & Balleine, B. The general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell. J. Neurosci. 31, 11786–11794 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Murray, J. E. et al. Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits. Nat. Commun.6, 10088 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lingawi, N. W. & Balleine, B. W. Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits. J. Neurosci. 32, 1073–1081 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. El-Amamy, H. & Holland, P. Dissociable effects of disconnecting amygdala central nucleus from the ventral tegmental area or substantia nigra on learned orienting and incentive motivation. Eur. J. Neurosci. 25, 1557–1567 (2007).

    PubMed  PubMed Central  Google Scholar 

  95. Urcelay, G. P. & Jonkman, S. Delayed rewards facilitate habit formation. J. Exp. Psychol. Anim. Learn. Cogn. 45, 413–421 (2019).

    PubMed  Google Scholar 

  96. Nelson, A. & Killcross, S. Amphetamine exposure enhances habit formation. J. Neurosci. 26, 3805–3812 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Schmitzer-Torbert, N. et al. Post-training cocaine administration facilitates habit learning and requires the infralimbic cortex and dorsolateral striatum. Neurobiol. Learn. Mem. 118, 105–112 (2015).

    CAS  PubMed  Google Scholar 

  98. Hogarth, L., Balleine, B., Corbit, L. & Killcross, S. Associative learning mechanisms underpinning the transition from recreational drug use to addiction. Ann. N. Y. Acad. Sci. 1282, 12–24 (2013).

    CAS  PubMed  Google Scholar 

  99. Dickinson, A., Wood, N. & Smith, J. Alcohol seeking by rats: action or habit? Q. J. Exp. Psychol. B 55, 331–348 (2002).

    PubMed  Google Scholar 

  100. Miles, F., Everitt, B. & Dickinson, A. Oral cocaine seeking by rats: action or habit? Behav. Neurosci. 117, 927–938 (2003).

    PubMed  Google Scholar 

  101. Clemens, K. J., Castino, M. R., Cornish, J. L., Goodchild, A. K. & Holmes, N. M. Behavioral and neural substrates of habit formation in rats intravenously self-administering nicotine. Neuropsychopharmacology 39, 2584–2593 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Malvaez, M. & Wassum, K. M. Regulation of habit formation in the dorsal striatum. Opin. Behav. Sci. 20, 67–74 (2018).

    Google Scholar 

  103. Schoenbaum, G. & Shaham, Y. The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol. Psychiatry 63, 256–262 (2008).

    CAS  PubMed  Google Scholar 

  104. Hampson, R., Porrino, L., Opris, I., Stanford, T. & Deadwyler, S. Effects of cocaine rewards on neural representations of cognitive demand in nonhuman primates. Psychopharmacology 213,105–118 (2010).

    PubMed  PubMed Central  Google Scholar 

  105. Crombag, H., Gorny, G., Li, Y., Kolb, B. & Robinson, T. Opposite effects of amphetamine self-administration experience on dendritic spines in the medial and orbital prefrontal cortex. Cereb. Cortex 15, 341–348 (2005).

    PubMed  Google Scholar 

  106. Morein-Zamir, S. & Robbins, T. W. Fronto-striatal circuits in response-inhibition: relevance to addiction. Brain Res. 21, 488–497 (2014).

    Google Scholar 

  107. Rogers, R. D. et al. Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20, 322–339 (1999).

    CAS  PubMed  Google Scholar 

  108. Bechara, A. et al. Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39, 376–389 (2001).

    CAS  PubMed  Google Scholar 

  109. Hardwick, R. M., Forrence, A. D., Krakauer, J. W. & Haith, A. M. Time-dependent competition between goal-directed and habitual response preparation. Nat. Hum. Behav. 3, 1252–1262 (2019).

    PubMed  Google Scholar 

  110. Jonkman, S., Pelloux, Y. & Everitt, B. J. Drug intake is sufficient, but conditioning is not necessary for the emergence of compulsive cocaine seeking after extended self-administration. Neuropsychopharmacology 37, 1612–1619 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Belin, D., Mar, A. C., Dalley, J. W., Robbins, T. W. & Everitt, B. J. High impulsivity predicts the switch to compulsive cocaine-taking. Science 320, 1352–1355 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Belin, D., Belin-Rauscent, A., Everitt, B. J. & Dalley, J. W. In search of predictive endophenotypes in addiction: insights from preclinical research. Genes Brain Behav. 15, 74–88 (2016).

    CAS  PubMed  Google Scholar 

  113. Marchant, N. J., Campbell, E. J. & Kaganovsky, K. Punishment of alcohol-reinforced responding in alcohol preferring P rats reveals a bimodal population: Implications for models of compulsive drug seeking. Prog. Neuropsychopharmacol. Biol. Psychiatry 87, 68–77 (2018).

    CAS  PubMed  Google Scholar 

  114. Pelloux, Y., Murray, J. E. & Everitt, B. J. Differential roles of the prefrontal cortical subregions and basolateral amygdala in compulsive cocaine seeking and relapse after voluntary abstinence in rats. Eur. J. Neurosci. 38, 3018–3026 (2013).

    PubMed  PubMed Central  Google Scholar 

  115. Zapata, A., Hwang, E. K. & Lupica, C. R. lateral habenula involvement in impulsive cocaine seeking. Neuropsychopharmacology 42, 1103–1112 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).

    CAS  PubMed  Google Scholar 

  117. Chen, B. et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496, 359–362 (2013).

    CAS  PubMed  Google Scholar 

  118. Pelloux, Y., Everitt, B. J. & Dickinson, A. Compulsive drug seeking by rats under punishment: effects of drug taking history. Psychopharmacology 194, 127–137 (2007).

    CAS  PubMed  Google Scholar 

  119. Fan, X. C. et al. Hypersensitivity of prelimbic cortex neurons contributes to aggravated nociceptive responses in rats with experience of chronic inflammatory pain. Front. Mol. Neurosci. 11, 85 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Jonkman, S., Pelloux, Y. & Everitt, B. J. Differential roles of the dorsolateral and midlateral striatum in punished cocaine seeking. J. Neurosci. 32, 4645–4650 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Renteria, R., Baltz, E. T. & Gremel, C. M. Chronic alcohol exposure disrupts top-down control over basal ganglia action selection to produce habits. Nat. Commun. 9, 211 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Harada, M., Hiver, A., Pascoli, V. & Lüscher, C. Cortico-striatal synaptic plasticity underlying compulsive reward seeking. bioRxiv https://doi.org/10.1101/789495 (2019).

    Article  Google Scholar 

  123. Rogers, R. D. & Robbins, T. Investigating the neurocognitive deficits associated with chronic drug misuse. Curr. Opin. Neurobiol. 11, 250–257 (2001).

    CAS  PubMed  Google Scholar 

  124. Belin, D., Belin-Rauscent, A., Murray, J. E. & Everitt, B. J. Addiction: failure of control over maladaptive habits. Curr. Opin. Biol. 23, 564–572 (2013).

    CAS  Google Scholar 

  125. Ahmed, S. H. Trying to make sense of rodents’ drug choice behavior. Neuropsychopharmacol. Biol. Psychiatry 87, 3–10 (2018).

    CAS  Google Scholar 

  126. Cantin, L. et al. Cocaine is low on the value ladder of rats: possible evidence for resilience to addiction. PLoS One 5, e11592 (2010).

    PubMed  PubMed Central  Google Scholar 

  127. Higgins, S. T., Heil, S. H. & Lussier, J. P. Clinical implications of reinforcement as a determinant of substance use disorders. Annu. Rev. Psychol. 55, 431–461 (2004).

    PubMed  Google Scholar 

  128. Davis, D. R. et al. A review of the literature on contingency management in the treatment of substance use disorders, 2009–2014. Prev. Med. 92, 36–46 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. Hogarth, L. et al. Intact goal-directed control in treatment-seeking drug users indexed by outcome-devaluation and Pavlovian to instrumental transfer: critique of habit theory. Eur. J. Neurosci. 50, 2513–2525 (2019).

    PubMed  Google Scholar 

  130. Momennejad, I. et al. The successor representation in human reinforcement learning. Nat. Hum. Behav. 1, 680–692 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Singer, B. F., Fadanelli, M., Kawa, A. B. & Robinson, T. E. Are cocaine-seeking “habits” necessary for the development of addiction-like behavior in rats? J. Neurosci. 38, 60–73 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Colwill, R. M. & Rescorla, R. A. Associative structures in instrumental learning. Psychol. Learn. Motiv. 20, 55–104 (1986).

    Google Scholar 

  133. Holland, P. Relations between Pavlovian-instrumental transfer and reinforcer devaluation. J. Exp. Psychol. Anim. Behav. Process. 30, 104–117 (2004).

    PubMed  Google Scholar 

  134. Kosaki, Y. & Dickinson, A. Choice and contingency in the development of behavioral autonomy during instrumental conditioning. J. Exp. Psychol. Anim. Behav. Process. 36, 334–342 (2010).

    PubMed  Google Scholar 

  135. Weiss, F., Markou, A., Lorang, M. T. & Koob, G. Basal extracellular dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration. Brain Res. 593, 314–318 (1992).

    CAS  PubMed  Google Scholar 

  136. Mateo, Y., Lack, C., Morgan, D., Roberts, D. & Jones, S. Reduced dopamine terminal function and insensitivity to cocaine following cocaine binge self-administration and deprivation. Neuropsychopharmacology 30, 1455–1463 (2005).

    CAS  PubMed  Google Scholar 

  137. Volkow, N. D. & Fowler, J. S. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb. Cortex 10, 318–325 (2000).

    CAS  PubMed  Google Scholar 

  138. Pelloux, Y. & Baunez, C. Deep brain stimulation for addiction: why the subthalamic nucleus should be favored. Curr. Opin. Neurobiol. 23, 713–720 (2013).

    CAS  PubMed  Google Scholar 

  139. Terraneo, A. et al. Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: a pilot study. Eur. Neuropsychopharmacol. 26, 37–44 (2016).

    CAS  PubMed  Google Scholar 

  140. Weeks, J. R. Experimental morphine addiction: method for automatic intravenous injections in unrestrained rats. Science 138, 143–144 (1962).

    CAS  PubMed  Google Scholar 

  141. Dickinson, A. Conditioning and associative learning. Br. Med. Bull. 37, 165–168 (1981).

    CAS  PubMed  Google Scholar 

  142. Wise, R. A. Role of brain dopamine in food reward and reinforcement. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1149–1158 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Koob, G. F. New dimensions in human laboratory models of addiction. Addict. Biol. 14, 1–8 (2009).

    PubMed  Google Scholar 

  144. Ahmed, S. H. & Koob, G. Transition from moderate to excessive drug intake: change in hedonic set point. Science 282, 298–300 (1998).

    CAS  PubMed  Google Scholar 

  145. Wolffgramm, J. An ethopharmacological approach to the development of drug addiction. Neurosci. Biobehav. Rev. 15, 515–519 (1991).

    CAS  PubMed  Google Scholar 

  146. Ahmed, S. H. & Koob, G. Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychopharmacology 146, 303–312 (1999).

    CAS  PubMed  Google Scholar 

  147. O’Dell, L. E., Roberts, A. J., Smith, R. T. & Koob, G. F. Enhanced alcohol self-administration after intermittent versus continuous alcohol vapor exposure. Alcohol. Clin. Exp. Res. 28, 1676–1682 (2004).

    PubMed  Google Scholar 

  148. Paterson, N. E. & Markou, A. Increased motivation for self-administered cocaine after escalated cocaine intake. Neuroreport 14, 2229–2232 (2003).

    CAS  PubMed  Google Scholar 

  149. Koob, G. Negative reinforcement in drug addiction: the darkness within. Curr. Opin. Neurobiol. 23, 559–563 (2013).

    CAS  PubMed  Google Scholar 

  150. Kawa, A. B., Bentzley, B. S. & Robinson, T. E. Less is more: prolonged intermittent access cocaine self-administration produces incentive-sensitization and addiction-like behavior. Psychopharmacology 233, 3587–3602 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lesscher, H. & Vanderschuren, L. Compulsive drug use and its neural substrates. Rev. Neurosci. 23, 731–745 (2012).

    PubMed  Google Scholar 

  152. Vengeliene, V., Celerier, E., Chaskiel, L., Penzo, F. & Spanagel, R. Compulsive alcohol drinking in rodents. Addict. Biol. 14, 384–396 (2009).

    CAS  PubMed  Google Scholar 

  153. Tornatzky, W. & Miczek, K. A. Cocaine self-administration “binges”: transition from behavioral and autonomic regulation toward homeostatic dysregulation in rats. Psychopharmacology 148, 289–298 (2000).

    CAS  PubMed  Google Scholar 

  154. Belin, D., Balado, E., Piazza, P. & Deroche-Gamonet, V. Pattern of intake and drug craving predict the development of cocaine addiction-like behavior in rats. Biol. Psychiatry 65, 863–868 (2009).

    CAS  PubMed  Google Scholar 

  155. Seif, T. et al. Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake. Nat. Neurosci. 16, 1094–1100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Torres, O. V. et al. Compulsive methamphetamine taking under punishment is associated with greater cue-induced drug seeking in rats. Behav. Brain Res. 326, 265–271 (2017).

    CAS  PubMed  Google Scholar 

  157. Belin, D., Deroche-Gamonet, V. & Jaber, M. Cocaine-induced sensitization is associated with altered dynamics of transcriptional responses of the dopamine transporter, tyrosine hydroxylase, and dopamine D2 receptors in C57Bl/6J mice. Psychopharmacology 193, 567–578 (2007).

    CAS  PubMed  Google Scholar 

  158. Olmstead, M., Lafond, M., Everitt, B. J. & Dickinson, A. Cocaine seeking by rats is a goal-directed action. Behav. Neurosci. 115, 394–402 (2001).

    CAS  PubMed  Google Scholar 

  159. Olmstead, M., Parkinson, J., Miles, F., Everitt, B. J. & Dickinson, A. Cocaine-seeking by rats: regulation, reinforcement and activation. Psychopharmacology 152, 123–131 (2000).

    CAS  PubMed  Google Scholar 

  160. Goldberg, S. R. Comparable behavior maintained under fixed-ratio and second-order schedules of food presentation, cocaine injection or d-amphetamine injection in the squirrel monkey. J. Pharmacol. Exp. Ther. 186, 18–30 (1973).

    CAS  PubMed  Google Scholar 

  161. Everitt, B. J. & Robbins, T. W. Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behaviour. Psychopharmacology 153, 17–30 (2000).

    CAS  PubMed  Google Scholar 

  162. Giuliano, C. et al. Evidence for a long-lasting compulsive alcohol seeking phenotype in rats. Neuropsychopharmacology 43, 728–738 (2018).

    CAS  PubMed  Google Scholar 

  163. Everitt, B. J. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories-indications for novel treatments of addiction. Eur. J. Neurosci. 40, 2163–2182 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Grimm, J. W., Hope, B. T., Wise, R. A. & Shaham, Y. Incubation of cocaine craving after withdrawal. Nature 412, 141–142 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Venniro, M., Caprioli, D. & Shaham, Y. Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog. Brain Res. 224, 25–52 (2016).

    PubMed  Google Scholar 

  166. Wolf, M. E. Synaptic mechanisms underlying persistent cocaine craving. Nat. Rev. Neurosci. 17, 351–365 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Kalivas, P. W. & McFarland, K. Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology 168, 44–56 (2003).

    CAS  PubMed  Google Scholar 

  168. Szumlinski, K. et al. Homer isoforms differentially regulate cocaine-induced neuroplasticity. Neuropsychopharmacology 31, 768–777 (2006).

    CAS  PubMed  Google Scholar 

  169. Kalivas, P. W. The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 10, 561–572 (2009).

    CAS  PubMed  Google Scholar 

  170. Vanderschuren, L. J. & Everitt, B. J. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305, 1017–1019 (2004).

    CAS  PubMed  Google Scholar 

  171. Ostlund, S. & Balleine, B. Differential involvement of the basolateral amygdala and mediodorsal thalamus in instrumental action selection. J. Neurosci. 28, 4398–4405 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Cardinal, R., Parkinson, J. A., Hall, J. & Everitt, B. J. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–352 (2002).

    PubMed  Google Scholar 

  173. Kuhn, B. N., Campus, P. & Flagel, S. B. The Neurobiological Mechanisms Underlying Sign-Tracking Behavior (Michigan Publishing, 2018).

  174. Yin, H. H., Ostlund, S. B., Knowlton, B. J. & Balleine, B. W. The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci. 22, 513–523 (2005).

    PubMed  Google Scholar 

  175. Hart, G., Bradfield, L. A., Fok, S. Y., Chieng, B. & Balleine, B. W. The bilateral prefronto-striatal pathway is necessary for learning new goal-directed actions. Curr. Biol. 28, 2218–2229.e7 (2018).

    CAS  PubMed  Google Scholar 

  176. Balleine, B., Leung, B. & Ostlund, S. The orbitofrontal cortex, predicted value, and choice. Ann. N. Y. Acad. Sci. 1239, 43–50 (2011).

    PubMed  Google Scholar 

  177. Parkes, S. L. et al. Insular and ventrolateral orbitofrontal cortices differentially contribute to goal-directed behavior in rodents. Cereb. Cortex 28, 2313–2325 (2018).

    PubMed  Google Scholar 

  178. Bradfield, L. A., Dezfouli, A., van Holstein, M., Chieng, B. & Balleine, B. W. Medial orbitofrontal cortex mediates outcome retrieval in partially observable task situations. Neuron 88, 1268–1280 (2015).

    CAS  PubMed  Google Scholar 

  179. Murray, E. A. & Rudebeck, P. H. Specializations for reward-guided decision-making in the primate ventral prefrontal cortex. Nat. Rev. Neurosci. 19, 404–417 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Dickinson, A. Actions and habits: the development of behavioural autonomy. Philos. Trans. R. Soc. Lond. B 308, 67–78 (1985).

    Google Scholar 

  181. Wood, W. & Runger, D. Psychology of habit. Annu. Rev. Psychol. 67, 289–314 (2016).

    PubMed  Google Scholar 

  182. Yin, H. H., Knowlton, B. J. & Balleine, B. W. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19, 181–189 (2004).

    PubMed  Google Scholar 

  183. Killcross, S. & Coutureau, E. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb. Cortex 13, 400–408 (2003).

    PubMed  Google Scholar 

  184. Smith, K. S., Virkud, A., Deisseroth, K. & Graybiel, A. M. Reversible online control of habitual behavior by optogenetic perturbation of medial prefrontal cortex. Proc. Natl Acad. Sci. USA 109, 18932–18937 (2012).

    CAS  PubMed  Google Scholar 

  185. Smith, K. S. & Graybiel, A. M. A dual operator view of habitual behavior reflecting cortical and striatal dynamics. Neuron 79, 361–374 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Cardinal, R. N. & Cheung, T. H. Nucleus accumbens core lesions retard instrumental learning and performance with delayed reinforcement in the rat. BMC Neurosci. 6, 9 (2005).

    PubMed  PubMed Central  Google Scholar 

  187. Parkinson, J. A., Olmstead, M. C., Burns, L. H., Robbins, T. W. & Everitt, B. J. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J. Neurosci. 19, 2401–2411 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Heymann, G. et al. Synergy of distinct dopamine projection populations in behavioral reinforcement. Neuron 105, 909–920.e5 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Swiss National Science Foundation and the European Research Council (C.L.) as well as the UK Medical Research Council (grant MR/N02530X/1) and the Wellcome Trust (Investigator Award WT 104631/Z/14/Z/) for financial support (B.J.E., T.W.R.). The authors thank D. Belin and M. Loureiro for help with the figures.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the article’s content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Christian Lüscher, Trevor W. Robbins or Barry J. Everitt.

Ethics declarations

Competing interests

C.L. has no competing interests. T.W.R. consults for Cambridge Cognition, Unilever, Cassava and Greenfield BioVentures. He holds research grants from Shionogi & Co., Ltd and GlaxoSmithKline plc., and receives royalties from Cambridge Cognition for CANTAB. He also receives editorial honoraria from Springer and Elsevier. B.J.E. has no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Titrated

Adjusted in intensity, to measure the effect of a stimulus on behaviour.

Escalation of drug intake

Increase of drug intake during extended (long-access) periods of self-administration.

Reward thresholds

The minimal stimulation intensities required to produce a reinforcing effect.

Natural reinforcers

Rewards such as food and sex that motivate behaviour in animals and humans. They may be distinguished from artificial rewards such as addictive drugs that may nevertheless depend on the same neural systems in the brain.

Interoceptive

Relating to internal, or bodily, states that are interpreted by the brain through a process called ‘interoception’. In the case of drugs, bodily changes (such as increases in heart rate caused by stimulants) are an important component of the subjective effects of drugs.

Stimulant

A drug that increases arousal and activity. Amphetamine is a typical example of a stimulant, sometimes called a ‘psychomotor stimulant’.

Locomotor sensitization

Enhanced motor responses to the same does of a stimulant drug that follows intermittent, repeated dosing.

Cue-elicited reinstatement

Reinstatement of performance of previously extinguished drug-taking responses, supported by drug cues acting as conditioned reinforcers.

Extended amygdala

Neuroanatomical term that includes the centromedial amygdala, bed nucleus of the stria terminalis and, according to some, the shell of the nucleus accumbens and a group of neurons in the basal forebrain that links these structures.

Dysphoria

A state of unhappiness or suboptimal mood in humans.

Pavlovian–instrumental transfer

(PIT). Transfer of learning whereby conditioned stimuli associated with a reward can increase a separately trained instrumental response for that reward (specific transfer) or for other rewards (general transfer).

Sign tracking

Behaviour whereby the animal approaches a conditioned stimulus predictive of reward — as opposed to approaching a reward (or goal) directly (‘goal tracking’).

Contingency degradation

Degradation of the predictive relationship between responses and outcomes; for example, by presentation of ‘free’ (that is, response-independent) outcomes or extinction.

Quinine

A bitter crystalline compound present in cinchona bark that is used to adulterate an otherwise readily ingested liquid.

Progressive ratio schedule

A behavioural procedure whereby the number of required responses increases after each reward delivery. The number of responses at which the animal ceases to respond is called the ‘break point’.

Analgesic

Relating to the effects of a drug that relieves pain (for example, morphine).

Value updating

The perception of a change in value of a reinforcer after an antecedent manipulation; for example, the value of food is decreased following ingestion of the food to satiety.

Incubation of cocaine craving

The increase in instrumental responding for a drug-associated conditioned stimulus that occurs the longer the period of abstinence from drug taking.

Direct pathway

Projection of dopamine D1 receptor-expressing medium spiny neurons in the striatum to the midbrain. The indirect pathway involves a striatal projection of dopamine D2 receptor-expressing medium spiny neurons to the pallidum.

Contingency management

A behavioural modification intervention that reinforces desired behaviour (such as abstinence) with incentives.

Reversal learning

Learning of a reversal of the reward contingencies of two options, reflecting behavioural adaptation to environmental change.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lüscher, C., Robbins, T.W. & Everitt, B.J. The transition to compulsion in addiction. Nat Rev Neurosci 21, 247–263 (2020). https://doi.org/10.1038/s41583-020-0289-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-0289-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing