Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation

Abstract

To meet the requirements of potential applications, it is of great importance to explore new catalysts for formic acid oxidation that have both ultra-high mass activity and CO resistance. Here, we successfully synthesize atomically dispersed Rh on N-doped carbon (SA-Rh/CN) and discover that SA-Rh/CN exhibits promising electrocatalytic properties for formic acid oxidation. The mass activity shows 28- and 67-fold enhancements compared with state-of-the-art Pd/C and Pt/C, respectively, despite the low activity of Rh/C. Interestingly, SA-Rh/CN exhibits greatly enhanced tolerance to CO poisoning, and Rh atoms in SA-Rh/CN resist sintering after long-term testing, resulting in excellent catalytic stability. Density functional theory calculations suggest that the formate route is more favourable on SA-Rh/CN. According to calculations, the high barrier to produce CO, together with the relatively unfavourable binding with CO, contribute to its CO tolerance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The synthesis strategy and characterizations.
Fig. 2: Structural characterization by XAFS spectroscopy.
Fig. 3: Electrooxidation of formic acid performance.
Fig. 4: Two CO stripping experiments.
Fig. 5: DFT calculations.

Similar content being viewed by others

Data availability

The data that support the findings of this paper are available from the corresponding authors upon reasonable request.

References

  1. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  2. Lai, J. et al. Concave and duck web-like platinum nanopentagons with enhanced electrocatalytic properties for formic acid oxidation. J. Mater. Chem. A 4, 807–812 (2016).

    Article  CAS  Google Scholar 

  3. Vidal-Iglesias, F. J., López-Cudero, A., Solla-Gullón, J. & Feliu, J. M. Towards more active and stable electrocatalysts for formic acid electrooxidation: antimony‐decorated octahedral platinum nanoparticles. Angew. Chem. Int. Ed. 52, 964–967 (2013).

    Article  CAS  Google Scholar 

  4. Su, N. et al. The facile synthesis of single crystalline palladium arrow-headed tripods and their application in formic acid electro-oxidation. Chem. Commun. 51, 7195–7198 (2015).

    Article  CAS  Google Scholar 

  5. Yang, S. et al. One-pot synthesis of graphene-supported monodisperse Pd nanoparticles as catalyst for formic acid electro-oxidation. Sci. Rep. 4, 4501 (2014).

    Article  CAS  Google Scholar 

  6. Sial, M. A. Z. G., Ud Din, M. A. & Wang, X. Multimetallic nanosheets: synthesis and applications in fuel cells. Chem. Soc. Rev. 47, 6175–6200 (2018).

    Article  Google Scholar 

  7. Li, C. et al. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 9, 3702 (2018).

    Article  CAS  Google Scholar 

  8. Chen, S., Su, H., Wang, Y., Wu, W. & Zeng, J. Size-controlled synthesis of platinum–copper hierarchical trigonal bipyramid nanoframes. Angew. Chem. Int. Ed. 54, 108–113 (2015).

    Article  CAS  Google Scholar 

  9. Fu, Q., Li, H., Ma, S., Hu, B. & Yu, S. A mixed-solvent route to unique PtAuCu ternary nanotubes templated from Cu nanowires as efficient dual electrocatalysts. Sci. China Mater. 59, 112–121 (2016).

    Article  CAS  Google Scholar 

  10. Dong, L. et al. Pd–Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 9, 1590–1599 (2016).

    Article  CAS  Google Scholar 

  11. Ji, X. et al. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2, 286–293 (2010).

    Article  CAS  Google Scholar 

  12. Xu, H. et al. Ultra-uniform PdBi nanodots with high activity towards formic acid oxidation. J. Power Sources 356, 27–35 (2017).

    Article  CAS  Google Scholar 

  13. Chang, J., Feng, L., Liu, C., Xing, W. & Hu, X. An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells. Angew. Chem. Int. Ed. 53, 122–126 (2014).

    Article  CAS  Google Scholar 

  14. Wang, X., Yang, J., Yin, H., Song, R. & Tang, Z. ‘Raisin bun’‐like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation. Adv. Mater. 25, 2728–2732 (2013).

    Article  CAS  Google Scholar 

  15. Li, H. et al. Shape-controlled synthesis of surface-clean ultrathin palladium nanosheets by simply mixing a dinuclear PdI carbonyl chloride complex with H2O. Angew. Chem. Int. Ed. 52, 8368–8372 (2013).

    Article  CAS  Google Scholar 

  16. Huang, X. et al. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32 (2011).

    Article  CAS  Google Scholar 

  17. He, T. et al. Inflating hollow nanocrystals through a repeated Kirkendall cavitation process. Nat. Commun. 8, 1261 (2017).

    Article  CAS  Google Scholar 

  18. Li, C. et al. Surfactant-directed synthesis of mesoporous Pd films with perpendicular mesochannels as efficient electrocatalysts. J. Am. Chem. Soc. 137, 11558–11561 (2015).

    Article  CAS  Google Scholar 

  19. Xia, B. et al. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 135, 9480–9485 (2013).

    Article  CAS  Google Scholar 

  20. Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics and hydrogen. Science 344, 616–619 (2014).

    Article  CAS  Google Scholar 

  21. Yang, X. F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    Article  CAS  Google Scholar 

  22. Chen, Y. et al. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018).

    Article  CAS  Google Scholar 

  23. Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2017).

    Article  CAS  Google Scholar 

  24. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  Google Scholar 

  25. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  CAS  Google Scholar 

  26. Wang, L. et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat. Commun. 7, 14036 (2016).

    Article  CAS  Google Scholar 

  27. Zitolo, A. et al. Identification of catalytic sites in cobalt–nitrogen–carbon materials for the oxygen reduction reaction. Nat. Commun. 8, 957 (2017).

    Article  CAS  Google Scholar 

  28. Wu, H. et al. Highly doped and exposed Cu(i)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy Environ. Sci. 9, 3736–3745 (2016).

    Article  CAS  Google Scholar 

  29. Gao, G., Jiao, Y., Waclawik, E. R. & Du, A. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 138, 6292–6297 (2016).

    Article  CAS  Google Scholar 

  30. Liu, W. et al. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem. Int. Ed. 56, 9312–9317 (2017).

    Article  CAS  Google Scholar 

  31. Cao, Y. et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew. Chem. Int. Ed. 56, 12191–12196 (2017).

    Article  CAS  Google Scholar 

  32. Wei, S. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

    Article  CAS  Google Scholar 

  33. Funke, H. & Scheinost, A. C. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 71, 094110 (2005).

    Article  CAS  Google Scholar 

  34. Zitolo, A. et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015).

    Article  CAS  Google Scholar 

  35. Liu, W. et al. Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 7, 5758–5764 (2016).

    Article  CAS  Google Scholar 

  36. Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  CAS  Google Scholar 

  37. Sarangi, R., Cho, J., Nam, W. & Solomon, E. I. XAS and DFT investigation of mononuclear cobalt(iii) peroxo complexes: electronic control of the geometric structure in CoO2 versus NiO2 systems. Inorg. Chem. 50, 614–620 (2011).

    Article  CAS  Google Scholar 

  38. Koningsberger, D. C. & Prins, R. (eds.) X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES Vol. 92 (Wiley, 1988).

  39. Vaughan, B. A. et al. Mechanistic studies of single-step styrene production using a rhodium(i) catalyst. J. Am. Chem. Soc. 139, 1485–1498 (2017).

    Article  CAS  Google Scholar 

  40. Jiang, B. et al. A stepwise-designed Rh-Au-Si nanocomposite that surpasses Pt/C hydrogen evolution activity at high overpotentials. Nano Res. 10, 1749–1755 (2017).

    Article  CAS  Google Scholar 

  41. Sateke, S. et al. Pentamethylcyclopentadienyl rhodium(iii)–chiral disulfonate hybrid catalysis for enantioselective C–H bond functionalization. Nat. Catal. 1, 585–591 (2018).

    Article  CAS  Google Scholar 

  42. Herron, J. A., Scaranto, J., Ferrin, P., Li, S. & Mavrikakis, M. Trends in formic acid decomposition on model transition metal surfaces: a density functional theory study. ACS Catal. 4, 4434–4445 (2014).

    Article  CAS  Google Scholar 

  43. Cho, J. et al. Role of heteronuclear interactions in selective H2 formation from HCOOH decomposition on bimetallic Pd/M (M = late transition FCC metal) catalysts. ACS Catal. 7, 2553–2562 (2017).

    Article  CAS  Google Scholar 

  44. Lović, J. D. et al. Catalytic activities of Pt thin films electrodeposited onto Bi coated glassy carbon substrate toward formic acid electrooxidation. J. Electroanal. Chem. 735, 1–9 (2014).

    Article  CAS  Google Scholar 

  45. Chen, Y.-X., Heinen, M., Jusys, Z. & Behm, R. J. Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode? Langmuir 22, 10399–10408 (2006).

    Article  CAS  Google Scholar 

  46. Neurock, M., Janik, M. & Wieckowski, A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss. 140, 363–378 (2009).

    Article  Google Scholar 

  47. Chen, Q., Liu, Z. & Wong, C. H. An ab initio molecular dynamics study on the solvation of formate ion and formic acid in water. J. Theor. Comput. Chem. 11, 1019–1032 (2012).

    Article  CAS  Google Scholar 

  48. Lee, J. G. et al. Deprotonation of solvated formic acid: Car–Parrinello and metadynamics simulations. J. Phys. Chem. B 110, 2325–2331 (2006).

    Article  CAS  Google Scholar 

  49. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  50. Bunău, O. & Joly, Y. Self-consistent aspects of X-ray absorption calculations. J. Phys. Condens. Matter 21, 345501 (2009).

    Article  CAS  Google Scholar 

  51. Zhu, F. et al. High selectivity PtRh/RGO catalysts for ethanol electro-oxidation at low potentials: enhancing the efficiency of CO2 from alcoholic groups. Electrochim. Acta 292, 208–216 (2018).

    Article  CAS  Google Scholar 

  52. Zhi, W. S. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4498 (2017).

    Google Scholar 

  53. Wyckoff, R. W. G. Cubic Closest Packed, CCP, Structure Crystal Structures 2nd edn, Vol. 1, 7–83 (Interscience Publishers, 1963).

  54. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. J. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  55. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  57. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  58. Monkhorst, H. J. & Pack, J. D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  59. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  CAS  Google Scholar 

  60. Jónsson, H., Mills, G. & Jacobsen, K. W. in Classical and Quantum Dynamics in Condensed Phase Simulations 385–404 (World Scientific, 1998).

  61. Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

    Article  CAS  Google Scholar 

  62. Huang, B., Xiao, L., Lu, J. & Zhuang, L. Spatially resolved quantification of the surface reactivity of solid catalysts. Angew. Chem. Int. Ed. 55, 6239–6243 (2016).

    Article  CAS  Google Scholar 

  63. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  64. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  65. Yeh, K. Y., Restaino, N. A., Esopi, M. R., Maranas, J. K. & Janik, M. J. The adsorption of bisulfate and sulfate anions over a Pt(111) electrode: a first principle study of adsorption configurations, vibrational frequencies and linear sweep voltammogram simulations. Catal. Today 202, 20–35 (2013).

    Article  CAS  Google Scholar 

  66. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  CAS  Google Scholar 

  67. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  CAS  Google Scholar 

  68. Yu, L., Pan, X., Cao, X., Hu, P. & Bao, X. Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J. Catal. 282, 183–190 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFA0202801 and 2018YFA0702003), the National Natural Science Foundation of China (21671117, 21871159 and 21890383), China Postdoctoral Science Foundation (043260409) and the Jilin Province Science and Technology Development Program (20150101066JC and 20160622037JC). We thank Stanford Synchrotron Radiation Lightsource (SSRL) BL7-3 for providing the beam time. R.C. acknowledges support from the DOE-funded LDRD programme and SSRL. J.D. acknowledges support from the Youth Innovation Promotion Association CAS.

Author information

Authors and Affiliations

Authors

Contributions

Y.X. performed the experiments and wrote the paper. Z.-Q.H. and C.-R.C. conducted the DFT calculations and analysis. J.D., R.C., Y.W. and W.C. helped with XANES and EXAFS spectrometry analyses. P.X. and Y.X. collected and analysed the data. Z.L. helped with synthesizing the catalysts. Z.J. and W.X. helped with the single cell test. Z.Z. helped with the data analysis of electrooxidation. X.W., J.Y., S.S. and L.Z. helped with the in situ FTIR analysis. L.G. assisted with taking AC-HAADF-STEM images. X.C., H.Y., C.C. and Q.P. helped with data analyses and discussions. D.W. and Y.L. conceived the experiments, planned synthesis, analysed results and wrote the paper.

Corresponding authors

Correspondence to Dingsheng Wang or Yadong Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Matteo Cargnello, Sebastian Peter and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–84 and Tables 1–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Dong, J., Huang, ZQ. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15, 390–397 (2020). https://doi.org/10.1038/s41565-020-0665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-0665-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing