Skip to main content
Log in

A new strong convergence for solving split variational inclusion problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The purpose of this article is to propose an algorithm for finding an approximate solution of a split variational inclusion problem for monotone operators. By using inertial method, we get a new and simple algorithm for such a problem. Under standard assumptions, we study the strong convergence theorem of the proposed algorithm. As application, we study the split feasibility problem in real Hilbert spaces. Finally, for supporting the convergence of the proposed algorithm, we also consider several preliminary numerical experiments for solving signal recovery by compressed sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alofi, A.S., Alsulami, S.M., Takahashi, W.: The split common null point problem and Halpern-type strong convergence theorem in Hilbert spaces. J Nonlinear Convex Anal. 16, 775–789 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14, 773–782 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Bot, R.I., Csetnek, E.R., Laszlo, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions. EURO J. Comput. Optim. 4, 3–25 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Bot, R.I., Csetnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 17, 600–616 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Bot, R.I., Csetnek, E.R.: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithms. 71, 519–540 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1, 29–49 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Bot, R.I., Csetnek, E.R.: A hybrid proximal-extragradient algorithm with inertial effects. Numer. Funct. Anal. Optim. 36, 951–963 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Byrne, C.: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)

    MATH  Google Scholar 

  11. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Byrne, C., Censor, Y., Gibali, A., Reich, S.: Weak and strong convergence of algorithms for the split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Ceng, L.C., Ansari, Q.H., Yao, J.C.: An extragradient method for solving split feasibility and fixed point problems. Comput. Math. Appl. 64, 633–642 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Censor, Y., Elfving, T.: A multiprojection algorithms using Bregman projection in a product space. Numer. Algorithms. 8, 221–239 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Google Scholar 

  17. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms. 59, 301–323 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Che, H., Li, M.: The conjugate gradient method for split variational inclusion and constrained convex minimization problems. Appl. Math. Comput. 290, 426–438 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Chen, C., Ma, S., Yang, J.: A general inertial proximal point algorithm for mixed variational inequality problem. SIAM J. Optim. 25, 2120–2142 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Chuang, C.S.: Hybrid inertial proximal algorithm for the split variational inclusion problem in Hilbert spaces with applications. Optimization. 66, 777–792 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Chuang, C.S.: Algorithms with new parameter conditions for split variational inclusion problems in Hilbert spaces with application to split feasibility problem. Optimization. 65, 859–876 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, pp. 155–270. Academic Press, New York (1996)

    Google Scholar 

  23. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model Simul. 4, 1168–1200 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, M.T.: Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 70, 687–704 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Dong, Q.L., Cho, Y.J., Rassias, T.M.: The projection and contraction methods for finding common solutions to variational inequality problems. Optim. Lett. 12, 1871–1896 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Dong, Q.L., Tang, Y.C., Cho, Y.J., Rassias, T.M.: “Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problem. J. Glob. Optim. 71, 341–360 (2018)

    MathSciNet  MATH  Google Scholar 

  27. He, S.N., Tian, H.L.: Selective projection methods for solving a class of variational inequalities. Numer. Algorithms. 80, 617–634 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings: Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  29. Kazmi, K.R., Rizvi, S.H.: An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping. Optim. Lett. 8, 1113–1124 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Long, L.V., Thong, D.V., Dung, V.T.: New algorithms for the split variational inclusion problems and application to split feasibility problems. Optimization. (2019). https://doi.org/10.1080/02331934.2019.1631821

  31. Majee, P., Nahak, C.: On inertial proximal algorithm for split variational inclusion problems. Optimization. 67, 1701–1716 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Maingé, P.E., Gobinddass, M.L.: Convergence of one step projected gradient methods for variational inequalities. J. Optim. Theory Appl. 171, 146–168 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Maingé, P.E.: Numerical approach to monotone variational inequalities by a one-step projected reflected gradient method with line-search procedure. Comput. Math. Appl. 3, 720–728 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Maingé, P.E.: Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set Valued Anal. 15, 67–79 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Marino, G., Xu, H.K.: Convergence of generalized proximal point algorithm. Commun. Pure Appl. Anal. 3, 791–808 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Moudafi, A., Elisabeth, E.: An approximate inertial proximal method using enlargement of a maximal monotone operator. Int. J. Pure Appl. Math. 5, 283–299 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275–283 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Polyak, B.T.: Some methods of speeding up the convergence of iterative methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)

  40. Shehu, Y., Ogbuisi, F.U.: An iterative method for solving split monotone variational inclusion and fixed point problems. RACSAM. 110, 503–518 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Takahashi, W.: Nonlinear functional analysis-fixed point theory and its applications. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  42. Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization. 65, 281–287 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Takahashi, W., Xu, H.K., Yao, J.C.: Iterative methods for generalized split feasibility problems in Hilbert spaces. Set-Valued Var. Anal. 23, 205–221 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B. 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  45. Thong, D.V.: Viscosity approximation methods for solving fixed point problems and split common fixed point problems. J. fixed point theory appl. 19, 1481–1499 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Thong, D.V., Hieu, D.V.: An inertial method for solving split common fixed point problems. J. fixed point theory appl. 19, 3029–3051 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Thong, D.V., Dung, V.T., Tuan, P.A.: Hybrid mann methods for the split variational inclusion problems and fixed point problems. J. Nonlinear Convex Anal. 20, 625–645 (2019)

    MathSciNet  Google Scholar 

  48. Xu, H.K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Aviv Gibali and three anonymous reviewers for their comments on the manuscript which helped us very much in improving and presenting the original version of this paper. This work was partially supported by the National Foundation for Science and Technology Development under grant: 101.01-2019.320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeol Je Cho.

Additional information

Dedicated to Professor Pham Ky Anh on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thong, D.V., Dung, V.T. & Cho, Y.J. A new strong convergence for solving split variational inclusion problems. Numer Algor 86, 565–591 (2021). https://doi.org/10.1007/s11075-020-00901-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00901-0

Keywords

Mathematics Subject Classification (2000)

Navigation