Skip to main content

Advertisement

Log in

Biocrusts Modulate Responses of Nitrous Oxide and Methane Soil Fluxes to Simulated Climate Change in a Mediterranean Dryland

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Little is known about the role of biocrusts in regulating the responses of N2O and CH4 fluxes to climate change in drylands. Here, we aim to help filling this knowledge gap by using an 8-year field experiment in central Spain where temperature and rainfall are being manipulated (~ 1.9°C warming, 33% rainfall reduction and their combination) in areas with and without well-developed biocrust communities. Areas with initial high cover of well-developed biocrusts showed lower N2O emissions, enhanced CH4 uptake and higher abundances of functional genes linked to N2O and CH4 fluxes compared with areas with poorly developed biocrusts. Moreover, biocrusts modulated the responses of gases emissions and related functional genes to warming and rainfall reductions. Specifically, we found under rainfall exclusion and its combination with warming a sharp reduction in N2O fluxes (~ 96% and ~ 197%, respectively) only under well-developed biocrust cover. Warming and its combination with rainfall exclusion reduced CH4 consumption in areas with initial low cover of well-developed biocrust, whereas rainfall exclusion enhanced CH4 uptake only in areas with high initial cover of well-developed biocrusts. Similarly, the combination of warming and rainfall exclusion increased the abundance of the nosZ gene compared to the rainfall exclusion treatment and increased the abundance of the pmoA gene compared to the control, but only in areas with low biocrust cover. Taken together, our results indicate that well-developed biocrust communities could counteract the impact of warming and altered rainfall patterns on soil N2O and CH4 fluxes, highlighting their importance and the need to preserve them to minimize climate change impacts on drylands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Angel R, Conrad R. 2009. In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils. Environ Microbiol 11:2598–610.

    CAS  PubMed  Google Scholar 

  • Aschenbach K, Conrad R, Reháková K, Angel R, Brodie EL, Berkeley L, Chin KK, State G. 2013. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas. Front Microbiol 4:1–14.

    Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–35.

    PubMed  Google Scholar 

  • Barger NN, Weber B, Garcia-Pichel F, Zaady E, Belnap J. 2016. Patterns and controls on nitrogen cycling of biological soil crusts. In: Weber B, Büdel B, Belnap J, Eds. Biological soil crusts: an organizing principle in drylands. Cham: Springer. p 257–85.

    Google Scholar 

  • Barton L, Gleeson DB, Maccarone LD, Zúñiga LP, Murphy DV. 2013. Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils? Soil Biol Biochem 62:28–35. https://doi.org/10.1016/j.soilbio.2013.02.014.

    Article  CAS  Google Scholar 

  • Barton L, Kiese R, Gatter D, Butterbach-bahl K, Buck R, Hinz C, Murphy DV. 2008. Nitrous oxide emissions from a cropped soil in a semi-arid climate. Glob Chang Biol 14:177–92.

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.

    Google Scholar 

  • Bourne DG, McDonald IR, Murrell JC. 2001. Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 67:3802–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowden RD, Melillo JM, Steudler PA, Aber JD. 1990. Effects of nitrogen additions on annual nitrous oxide fluxes from temperate forest soils in the northeastern United States. J Geophys Res 95:13997–4005. https://doi.org/10.1029/91JD00151.

    Article  Google Scholar 

  • Bremner JM. 1997. Sources of nitrous oxide in soils. Nutr Cycl Agroecosyst 49:7–16.

    CAS  Google Scholar 

  • Butterbach-Bahl K, Papen H. 2002. Four years continuous record of CH4-exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. Plant Soil 240:77–90.

    CAS  Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG. 2010. The evolution and future of Earth’s nitrogen cycle. Science (80-) 330:192–6.

    CAS  Google Scholar 

  • Castillo-Monroy AP, Maestre FT, Delgado-Baquerizo M, Gallardo A. 2010. Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland. Plant Soil 333:21–34.

    CAS  Google Scholar 

  • Chamizo S, Belnap J, Eldridge DJ, Cantón Y, Malam Issa O. 2016. The role of biocrusts in arid land hydrology. In: Weber B, Büdel B, Belnap J, Eds. Biological soil crusts: an organizing principle in drylands. Cham: Springer International Publishing. p 321–46. https://doi.org/10.1007/978-3-319-30214-0_17

    Chapter  Google Scholar 

  • Chapuis-Lardy L, Wrage N, Metay A, Chotte JL, Bernoux M. 2007. Soils, a sink for N2O? A review. Glob Chang Biol 13:1–17.

    Google Scholar 

  • Conrad R. 2009. The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–92.

    CAS  PubMed  Google Scholar 

  • Dalal RC, Allen DE. 2008. Greenhouse gas fluxes from natural ecosystems. Aust J Bot 56:369–407. http://www.publish.csiro.au/?paper=BT07128

  • Dalal RC, Wang W, Robertson G, Parton W. 2003. Nitrous oxide emission from Australian agricultural lands and mitigation options, a review. Aust J Soil Res 41:165–95.

    CAS  Google Scholar 

  • Darrouzet-Nardi A, Reed SC, Grote EE, Belnap J. 2015. Observations of net soil exchange of CO2 in a dryland show experimental warming increases carbon losses in biocrust soils. Biogeochemistry 126:363–78.

    CAS  Google Scholar 

  • Delgado-Baquerizo M, Castillo-Monroy AP, Maestre FT, Gallardo A. 2010. Plants and biological soil crusts modulate the dominance of N forms in a semi-arid grassland. Soil Biol Biochem 42:376–8. https://doi.org/10.1016/j.soilbio.2009.11.003.

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Eldridge DJ, Bowker MA, Jeffries TC, Singh BK. 2018. Biocrust-forming mosses mitigate the impact of aridity on soil microbial communities in drylands: observational evidence from three continents. New Phytol 220:824–35.

    PubMed  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Escolar C, Gallardo A, Ochoa V, Gozalo B, Prado-Comesaña A. 2014. Direct and indirect impacts of climate change on microbial and biocrust communities alter the resistance of the N cycle in a semiarid grassland. J Ecol 102:1592–605.

    CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Eldridge DJ, Soliveres S, Bowker MA, Prado-Comesaña A, Gaitán J, Quero JL, Ochoa V, Gozalo B, García-Gómez M, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Boeken BR, Bran D, Cabrera O, Carreira JA, Chaieb M, Conceição AA, Derak M, Ernst R, Espinosa CI, Florentino A, Gatica G, Ghiloufi W, Gómez-González S, Gutiérrez JR, Hernández RM, Huber-Sannwald E, Jankju M, Mau RL, Miriti M, Monerris J, Morici E, Muchane M, Naseri K, Pucheta E, Ramírez E, Ramírez-Collantes DA, Romão RL, Tighe M, Torres D, Torres-Díaz C, Val J, Veiga JP, Wang D, Yuan X, Zaady E. 2016. Human impacts and aridity differentially alter soil N availability in drylands worldwide. Glob Ecol Biogeogr 25:36–45.

    Google Scholar 

  • Dijkstra FA, Morgan JA, Follett RF, Lecain DR. 2013. Climate change reduces the net sink of CH4 and N2O in a semiarid grassland. Glob Chang Biol 19:1816–26.

    PubMed  Google Scholar 

  • Dijkstra FA, Prior SA, Runion GB, Torbert HA, Tian H, Lu C, Venterea RT. 2012. Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: evidence from field experiments. Front Ecol Environ 10:520–7.

    Google Scholar 

  • Domeignoz-Horta LA, Putz M, Spor A, Bru D, Breuil MC, Hallin S, Philippot L. 2016. Non-denitrifying nitrous oxide-reducing bacteria—an effective N2O sink in soil. Soil Biol Biochem 103:376–9. https://doi.org/10.1016/j.soilbio.2016.09.010.

    Article  CAS  Google Scholar 

  • Durán J, Rodríguez A, Morse JL, Groffman PM. 2013. Winter climate change effects on soil C and N cycles in urban grasslands. Glob Chang Biol 19:2826–37.

    PubMed  Google Scholar 

  • Eldridge DJ, Bowker MA, Maestre FT, Alonso P, Mau RL, Papadopoulos J, Escudero A. 2010. Interactive effects of three ecosystem engineers on infiltration in a semi-arid Mediterranean grassland. Ecosystems 13:499–510.

    Google Scholar 

  • Escolar C, Martinez I, Bowker MA, Maestre FT. 2012. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Philos Trans R Soc B Biol Sci 367:3087–99.

    Google Scholar 

  • Felde VJMNL, Peth S, Uteau-Puschmann D, Drahorad S, Felix-Henningsen P. 2014. Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers Conserv 23:1687–708.

    Google Scholar 

  • Firestone MK, Davidson EA. 1989. Microbiological basis of NO and N2O production and consumption in soil. Exch Trace Gases Betw Terr Ecosyst Atmos 47:7–21.

    CAS  Google Scholar 

  • Galbally IE, Kirstine WV, Meyer CP, Wang YP. 2008. Soil–atmosphere trace gas exchange in semiarid and arid zones. J Environ Qual 37:599.

    CAS  PubMed  Google Scholar 

  • Guan C, Li X, Zhang P, Li C. 2019. Effect of global warming on soil respiration and cumulative carbon release in biocrust-dominated areas in the Tengger Desert, northern China. Soil Sediments. 19:1161–70.

    CAS  Google Scholar 

  • Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM. 2018. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol 26:43–55.

    CAS  PubMed  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L. 2006. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R. 2016. Accelerated dryland expansion under climate change. Nat Clim Chang 6:166–71. https://doi.org/10.1038/nclimate2837.

    Article  Google Scholar 

  • Jones CM, Graf DRH, Bru D, Philippot L, Hallin S. 2013. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J 7:417–26. https://doi.org/10.1038/ismej.2012.125.

    Article  CAS  PubMed  Google Scholar 

  • King GM, Schnell S. 1994. Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature 370:282–4.

    CAS  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest package: tests in linear mixed effects models. J Stat Softw 82:1–26.

    Google Scholar 

  • Ladrón de Guevara M, Gozalo B, Raggio J, Lafuente A, Prieto M, Maestre FT. 2018. Warming reduces the cover, richness and evenness of lichen-dominated biocrusts but promotes moss growth: insights from an 8 yr experiment. New Phytol 220:811–23.

    PubMed  Google Scholar 

  • Lafuente A, Berdugo M, Ladrón de Guevara M, Gozalo B, Maestre FT. 2018. Simulated climate change affects how biocrusts modulate water gains and desiccation dynamics after rainfall events. Ecohydrology 11:e1935.

    PubMed  Google Scholar 

  • Lafuente A, Durán J, Recio J, Gallardo A, Singh BK, Maestre FT (2020) Data from article “Biocrusts modulate responses of nitrous oxide and methane soil fluxes to simulated climate change in a Mediterranean dryland”. Figshare. https://figshare.com/s/137aabd34825df5f09d6

  • Lafuente A, Bowker MA, Delgado-Baquerizo M, Durán J, Singh BK, Maestre FT. 2019. Global drivers of methane oxidation and denitrifying gene distribution in drylands. Glob Ecol Biogeogr 28:1230–43.

    Google Scholar 

  • Le Mer J, Roger P. 2001. Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50.

    Google Scholar 

  • Ley M, Lehmann MF, Niklaus PA, Luster J. 2018. Alteration of nitrous oxide emissions from floodplain soils by aggregate size, litter accumulation and plant–soil interactions. Biogeosciences 15:7043–57.

    CAS  Google Scholar 

  • Luo GJ, Kiese R, Wolf B, Butterbach-Bahl K. 2013. Effects of soil temperature and moisture on methane uptakes and nitrous oxide emissions across three different ecosystem types. Biogeosci Discuss 10:927–65.

    Google Scholar 

  • Maestre FT, Bowker MA, Cantón Y, Castillo-Monroy AP, Cortina J, Escolar C, Escudero A, Lázaro R, Martínez I. 2011. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J Arid Environ 75:1282–91. https://doi.org/10.1016/j.jaridenv.2010.12.008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maestre FT, Escolar C, Ladrón de Guevara M, Quero JL, Lázaro R, Delgado-Baquerizo M, Ochoa V, Berdugo M, Gozalo B, Gallardo A. 2013. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Chang Biol 19:3835–47.

    PubMed  PubMed Central  Google Scholar 

  • Martins CSC, Macdonald CA, Anderson IC, Singh BK. 2016. Feedback responses of soil greenhouse gas emissions to climate change are modulated by soil characteristics in dryland ecosystems. Soil Biol Biochem 100:21–32. https://doi.org/10.1016/j.soilbio.2016.05.007.

    Article  CAS  Google Scholar 

  • Martins CSC, Nazaries L, Delgado-Baquerizo M, Macdonald CA, Anderson IC, Hobbie SE, Venterea RT, Reich PB, Singh BK. 2017. Identifying environmental drivers of greenhouse gas emissions under warming and reduced rainfall in boreal–temperate forests. Funct Ecol 31:2356–68.

    Google Scholar 

  • Martins CSC, Nazaries L, Macdonald CA, Anderson IC, Singh BK. 2015. Water availability and abundance of microbial groups are key determinants of greenhouse gas fluxes in a dryland forest ecosystem. Soil Biol Biochem 86:5–16. https://doi.org/10.1016/j.soilbio.2015.03.012.

    Article  CAS  Google Scholar 

  • Meisner A, De Deyn GB, de Boer W, van der Putten WH. 2013. Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proc Natl Acad Sci U S A 110:9835–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty SR, Bodelier PLE, Conrad R. 2007. Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 62:24–31.

    CAS  PubMed  Google Scholar 

  • Nakicenovic N, Swart R. 2000. Special report on emissions scenarios (SRES). A Special Report on Working Group III. Intergovernmental Panel on Climate Change. IPCC, Geneva.

  • Nazaries L, Pan Y, Bodrossy L, Baggs EM, Millard P, Murrell JC, Singh BK. 2013. Microbial regulation of biogeochemical cycles: evidence from a study on methane flux and land use change. Appl Environ Microbiol 79:4031–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S. 2016. Greenhouse gas emissions from soils. A review. Chem Erde Geochem 76:327–52. https://doi.org/10.1016/j.chemer.2016.04.002.

    Article  CAS  Google Scholar 

  • Pachauri RK, Meyer LA. 2014. IPCC, 2014: climate change 2014: synthesis report. Contribution of working groups I.

  • Philippot L, Hallin S, Schloter M. 2007. Ecology of denitrifying prokaryotes in agricultural soil. Adv Agron 96:249–305.

    CAS  Google Scholar 

  • Potter CS, Davidson EA, Verchot LV. 1996. Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere 32:2219–46.

    CAS  Google Scholar 

  • Powell JR, Welsh A, Hallin S. 2015. Microbial functional diversity enhances predictive models linking environmental parameters to ecosystem properties. Ecology 96:1985–93.

    PubMed  Google Scholar 

  • Prăvălie R. 2016. Drylands extent and environmental issues. A global approach. Earth Sci Rev 161:259–78.

    Google Scholar 

  • R Core Team. 2017. R: a language and environment for statistical computing. https://www.r-project.org/.

  • Reynolds JF, Stafford Smith DM, Lambin EF, Turner BLII, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B. 2007. Global desertification: building a science for dryland development. Science (80-) 316:847–51.

    CAS  Google Scholar 

  • Schnell S, King GM. 1996. Responses of methanotrophic activity in soils and cultures to water stress. Appl Environ Microbiol 62:3203–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KA, Dobbie KE, Ball BC, Bakken LR, Sitaula BK, Hansen S, Brumme R, Borken W, Christensen S, Priemé A, Fowler D, Macdonald JA, Skiba U, Klemedtsson L, Kasimir-Klemedtsson A, Degórska A, Orlanski P. 2000. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Glob Chang Biol 6:791–803.

    Google Scholar 

  • Soussana JF, Allard V, Pilegaard K, Ambus P, Amman C, Campbell C, Ceschia E, Clifton-Brown J, Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen A, Horvath L, Jones M, Kasper G, Martin C, Nagy Z, Neftel A, Raschi A, Baronti S, Rees RM, Skiba U, Stefani P, Manca G, Sutton M, Tubaf Z, Valentini R. 2007. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric Ecosyst Environ 121:121–34.

    CAS  Google Scholar 

  • Stein LY. 2017. Resolving N2O respiration pathways: a tale of two NosZ clades. Environ Microbiol 19:4806–7.

    CAS  PubMed  Google Scholar 

  • Stekhoven DJ, Buehlmann P. 2012. MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics 28:112–18.

    CAS  PubMed  Google Scholar 

  • Steven B, Gallegos-Graves LV, Belnap J, Kuske CR. 2013. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–13.

    CAS  PubMed  Google Scholar 

  • Sullivan BW, Selmants PC, Hart SC. 2013. Does dissolved organic carbon regulate biological methane oxidation in semiarid soils? Glob Chang Biol 19:2149–57.

    PubMed  Google Scholar 

  • Wang B, Brewer PE, Shugart HH, Lerdau MT, Allison SD. 2019. Soil aggregates as biogeochemical reactors and implications for soil-atmosphere exchange of greenhouse gases—a concept. Glob Chang Biol 25:373–85. https://doi.org/10.1111/gcb.14515.

    Article  PubMed  Google Scholar 

  • Weber B, Burkhard B, Belnap J. 2016. Biological soil crusts as an organizing principle in drylands. Berlin: Springer.

    Google Scholar 

  • Weier KL, Doran JW, Power JF, Walters DT. 1993. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci Soc Am J 57:66.

    CAS  Google Scholar 

  • Zaady E, Groffman PM, Standing D, Shachak M. 2013. High N2O emissions in dry ecosystems. Eur J Soil Biol 59:1–7. https://doi.org/10.1016/j.ejsobi.2013.08.004.

    Article  CAS  Google Scholar 

  • Zhou Y, Hagedorn F, Zhou C, Jiang X, Wang X, Li M-H. 2016. Experimental warming of a mountain tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai Mountain, China. Sci Rep 6:21108.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Daniel Encinar, Beatriz Gozalo, Miriam Navarro and Victoria Ochoa, for their help with field campaigns, Ana Ros, Chanda Trivedi and Pankaj Trivedi for their help with laboratory analyses and David S-Pescador for his help with the processing of raw data. A. L. is supported by a FPI fellowship from the Spanish Ministry of Economy and Competitiveness (BES-2014-067831). M.D-B. acknowledges support from the Marie Sklodowska-Curie Actions of the Horizon 2020 Framework Programme H2020-MSCA-IF-2016 under REA Grant Agreement No. 702057 (CLIMIFUN) and the BES Grant Agreement No. LRA17\1193 (MUSGONET). J.D acknowledges support from the Fundação para Ciência e Tecnologia (IF/00950/2014) and the FEDER, within the PT2020 Partnership Agreement and COMPETE 2020 (UID/BIA/04004/2013). This research was supported by the European Research Council (ERC Grant Agreements 242658 [BIOCOM] and 647038 [BIODESERT]), by the Spanish Ministry of Economy and Competitiveness (BIOMOD project, ref. CGL2013-44661-R and AGL2015-64582-C3-3-R project) and by the Comunidad de Madrid and European Structural and Investment Funds (AGRISOST-CM S2013/ABI-2717). F.T.M. acknowledges support from Generalitat Valenciana (BIOMORES project, ref. CIDEGENT/2018/041). B.K.S research on the topic of biodiversity and ecosystem functions is funded by Australian Research Council (DP170104634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Lafuente.

Additional information

Author Contributions

FTM set up the experiment, designed the field study and wrote the grant that founded the work. AL and JD conducted the fieldwork. AL and JR processed data. BKS provided the facilities for molecular analyses. AL conducted the statistical analyses with the help of JD, MD-B and AG. All authors contributed to data interpretation and manuscript writing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafuente, A., Durán, J., Delgado-Baquerizo, M. et al. Biocrusts Modulate Responses of Nitrous Oxide and Methane Soil Fluxes to Simulated Climate Change in a Mediterranean Dryland. Ecosystems 23, 1690–1701 (2020). https://doi.org/10.1007/s10021-020-00497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00497-5

Keywords

Navigation