Skip to main content

Advertisement

Log in

High-Throughput Calculation Investigations on the Electrocatalytic Activity of Codoped Single Metal–Nitrogen Embedded in Graphene for ORR Mechanism

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Two types of single metal atoms embedded in graphene were investigated as a potential electrocatalyst for oxygen reduction reaction (ORR) for the application in a fuel cell. ORR was considered in the four elementary reaction steps of oxygen hydrogenation, perhydroxyl production, atomic oxygen hydrogenation, and final water form. All calculations of catalytic activity were performed with the Vienna Ab Initio Simulation Package (VASP) on an M@Gra (M = Mn, Fe, Co, and Ir)–embedded structure, indicating that high-efficiency catalytic activity in the oxidation reaction takes place on the top of metal atom sites. Our calculations revealed that ORR is profiled via four-electron transfer pathway. Activity of these catalysts is closely related to the same scaling linear relations between the adsorption energies of the ORR intermediates on different catalytic surfaces; this can improve their catalytic activity for O2 reduction through a high-efficiency 4e reaction path. Mn- and Ir-doped of cell A graphene exhibited excellent ORR catalytic performance in case of their small overpotential (less than 0.23 V) and low-energy barrier (less than 0.64 eV) of the Ir-doped graphene rate-determining step. Mn@Gra and Fe@Gra of cell B monolayers showed poor ORR catalytic performance due to the strong interaction between various ORR-involved species. Based on the free energy change and activation energy of each intermediate reaction in ORR, Fe@Gra and Ir@Gra are promising catalysts for ORR processes in fuel cells. This provides useful guidance for different types of catalysts in applications to fuel cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11(3), 218–230 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Bing, H. Liu, L. Zhang, et al., Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 39(6), 2184–2202 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2(6), 454–460 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Xiao, F.C. Zhang, J.I. Han, Synthesis, characterization and lithium-ion migration dynamics simulation of LiFe 1− x T x PO 4 (T= Mn, Co, La and Ce) doping cathode material for lithium-ion batteries. Appl. Phys. A 122(11), 980 (2016)

    Article  CAS  Google Scholar 

  6. L. Yu, X. Pan, X. Cao, et al., Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J. Catal. 282(1), 183–190 (2011)

    Article  CAS  Google Scholar 

  7. W. Sheng, H.A. Gasteiger, Y. Shao-Horn, Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157(11), B1529–B1536 (2010)

    Article  CAS  Google Scholar 

  8. A. Morozan et al., Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction. Carbon 49(14), 4839–4847 (2011)

    Article  CAS  Google Scholar 

  9. P. Zhao, Y. Su, Y. Zhang, et al., CO catalytic oxidation on iron-embedded hexagonal boron nitride sheet. Chem. Phys. Lett. 515(1–3), 159–162 (2011)

    Article  CAS  Google Scholar 

  10. J. Greeley, I.E.L. Stephens, A.S. Bondarenko, et al., Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1(7), 552–556 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. B. Lim, M. Jiang, P.H.C. Camargo, et al., Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932), 1302–1305 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. M.H. Seo, S.M. Choi, H.J. Kim, et al., The graphene-supported Pd and Pt catalysts for highly active oxygen reduction reaction in an alkaline condition. Electrochem. Commun. 13(2), 182–185 (2011)

    Article  CAS  Google Scholar 

  13. D. Kong, J.J. Cha, H. Wang, et al., First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6(12), 3553–3558 (2013)

    Article  CAS  Google Scholar 

  14. H. Wang, H. Feng, J. Li, Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small 10(11), 2165–2181 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. Q. Xue, Z. Pei, Y. Huang, et al., Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc–air batteries. J. Mater. Chem. A 5(39), 20818–20823 (2017)

    Article  CAS  Google Scholar 

  16. S. Zhou, X. Yang, W. Pei, N. Liu, J. Zhao, Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale 10(23), 10876–10883 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. F. Calle-Vallejo, J.I. Martinez, J. Rossmeisl, Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Phys. Chem. Chem. Phys. 13(34), 15639–15643 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. H. Zhang, Y. Tian, J. Zhao, et al., Small dopants make big differences: enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N–and P–doping. Electrochim. Acta 225, 543–550 (2017)

    Article  CAS  Google Scholar 

  19. S. Kattel, P. Atanassov, B. Kiefer, Catalytic activity of Co–N x/C electrocatalysts for oxygen reduction reaction: a density functional theory study. Phys. Chem. Chem. Phys. 15(1), 148–153 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. C. Zhu, S. Fu, Q. Shi, D. du, Y. Lin, Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56(45), 13944–13960 (2017)

    Article  CAS  Google Scholar 

  21. X. Zhang, J. Guo, P. Guan, et al., Catalytically active single-atom niobium in graphitic layers. Nat. Commun. 4, 1924 (2013)

    Article  PubMed  CAS  Google Scholar 

  22. C. Montero-Ocampo, J.R.V. Garcia, E.A. Estrada, Comparison of TiO2 and TiO2-CNT as cathode catalyst supports for ORR[J]. Int. J. Electrochem. Sci 8, 12780–12800 (2013)

    CAS  Google Scholar 

  23. Y. Xiao, Y. Ding, H. Cheng, et al., The potential application of 2D Ti2CT2 (T=C, O and S) monolayer MXenes as anodes for Na-ion batteries: a theoretical study. Comput. Mater. Sci. 163, 267–277 (2019)

    Article  CAS  Google Scholar 

  24. Y. Xiao, J. Wang, Y. Wang, et al., A new promising catalytic activity on blue phosphorene nitrogen doped nanosheets for the ORR as cathode in nonaqueous Li–air batteries. Appl. Surf. Sci. 488, 620–628 (2019)

    Article  CAS  Google Scholar 

  25. K. Kumar, C. Canaff, J. Rousseau, et al., Effect of the oxide–carbon heterointerface on the activity of Co3O4/NRGO Nanocomposites toward ORR and OER[J]. J. Phys. Chem. C 120(15), 7949–7958 (2016)

    Article  CAS  Google Scholar 

  26. S. Kattel, G. Wang, A density functional theory study of oxygen reduction reaction on M–N4 (M= Fe, Co, or Ni) clusters between graphitic pores. J. Mater. Chem. A 1(36), 10790–10797 (2013)

    Article  CAS  Google Scholar 

  27. Y. Liu, H. Jiang, Y. Zhu, et al., Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. J. Mater. Chem. A 4(5), 1694–1701 (2016)

    Article  CAS  Google Scholar 

  28. H. Yin, C. Zhang, F. Liu, et al., Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction. Adv. Funct. Mater. 24(20), 2930–2937 (2014)

    Article  CAS  Google Scholar 

  29. G. Fu, Z. Cui, Y. Chen, et al., Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Adv. Energy Mater. 7(1), 1601172 (2017)

    Article  CAS  Google Scholar 

  30. M.D. Bhatt, G. Lee, J.S. Lee, Density functional theory (DFT) calculations for oxygen reduction reaction mechanisms on metal-, nitrogen-co-doped graphene (M-N2-G (M= Ti, Cu, Mo, Nb and Ru)) electrocatalysts. Electrochim. Acta 228, 619–627 (2017)

    Article  CAS  Google Scholar 

  31. Y. Ito, H.J. Qiu, T. Fujita, Y. Tanabe, K. Tanigaki, M. Chen, Bicontinuous nanoporous N-doped graphene for the oxygen reduction reaction. Adv. Mater. 26(24), 4145–4150 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. Y. Han, Y.G. Wang, W. Chen, R. Xu, L. Zheng, J. Zhang, J. Luo, R.A. Shen, Y. Zhu, W.C. Cheong, C. Chen, Q. Peng, D. Wang, Y. Li, Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 139(48), 17269–17272 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. G. Kresse, J. Furthmüller, Software VASP, Vienna (1999). Phys. Rev. B 54(11), 169 (1996)

    Google Scholar 

  34. J. Hafner, Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29(13), 2044–2078 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Perdew, Burke, and Ernzerhof reply. Phys. Rev. Lett. 80(4), 891 (1998)

    Article  CAS  Google Scholar 

  36. Z. Wu, R.E. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B 73(23), 235116 (2006)

    Article  CAS  Google Scholar 

  37. J. Moellmann, S. Grimme, DFT-D3 study of some molecular crystals. J. Phys. Chem. C 118(14), 7615–7621 (2014)

    Article  CAS  Google Scholar 

  38. G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)

    Article  CAS  Google Scholar 

  39. R.R. Nazmutdinov, E. Santos, W. Schmickler, Spin effects in oxygen electrocatalysis: a discussion. Electrochem. Commun. 33, 14–17 (2013)

    Article  CAS  Google Scholar 

  40. A.X. Yin, W.C. Liu, J. Ke, et al., Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: controlled synthesis and DFT calculations. J. Am. Chem. Soc. 134(50), 20479–20489 (2012)

    Article  CAS  PubMed  Google Scholar 

  41. Y. Xiao, F.C. Zhang, J.I. Han, Electrical structures, magnetic polaron and lithium ion dynamics in three transition metal doped LiFe1− xMxPO4 (M= Mn, Co and La) cathode material for Li ion batteries from density functional theory study. Solid State Ionics 294, 73–81 (2016)

    Article  CAS  Google Scholar 

  42. C. Kirk, L.D. Chen, S. Siahrostami, M. Karamad, M. Bajdich, J. Voss, J.K. Nørskov, K. Chan, Theoretical investigations of the electrochemical reduction of CO on single metal atoms embedded in graphene. ACS Cent. Sci. 3(12), 1286–1293 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. L. Feng, Y. Liu, J. Zhao, Iron-embedded boron nitride nanosheet as a promising electrocatalyst for the oxygen reduction reaction (ORR): a density functional theory (DFT) study. J. Power Sources 287, 431–438 (2015)

    Article  CAS  Google Scholar 

  44. Guillory J K. Book Review of CRC Handbook of Chemistry and Physics. 2010

    Google Scholar 

  45. Y. Xiao, Y. Liu, N. Frederick, et al., Ab initio study of the electronic structure, magnetic and dynamics properties in LiMO2 and NaMO2 (M=V and Cr) as electrode cathode material for batteries. Solid State Ionics 307, 26–34 (2017) 2018, 122(51): 29307–29318

    Article  CAS  Google Scholar 

  46. V. Wang, N. Xu, VASPKIT: A Pre- and Post-Processing Program for the VASP Code

  47. Z. Lu, G. Xu, C. He, et al., Novel catalytic activity for oxygen reduction reaction on MnN4 embedded graphene: a dispersion-corrected density functional theory study[J]. Carbon 84, 500–508 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Lichtenberg high-performance computer is gratefully acknowledged, and we are also thankful to TU Darmstadt. We also thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

Financial support comes from the China Scholarship Council (CSC:201808440416) of China, Research and the Arts (HMWK) of the Hessen state in Germany, and Natural Science of Foundation of Hubei Province, China (No. 2019CFB225).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Xiao or Weibin Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Zhang, W. High-Throughput Calculation Investigations on the Electrocatalytic Activity of Codoped Single Metal–Nitrogen Embedded in Graphene for ORR Mechanism. Electrocatalysis 11, 393–404 (2020). https://doi.org/10.1007/s12678-020-00598-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00598-8

Keywords

Navigation