Skip to main content
Log in

New Electrode Materials for Symmetrical Solid Oxide Fuel Cells Based on Perovskites (La,Ca)(Fe,Co,Mg,Mo)O3 – δ

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The conductivity of perovskites La0.3Ca0.7Fe0.6Mg0.175Mo0.225O3 – δ (LCF6) and La0.3Ca0.7Fe0.5Mg0.25Mo0.25O3 – δ (LCF5) is studied in the temperature interval of 573–1173 К at varied oxygen partial pressure. It is found that when going from air to the reductive atmosphere (8% Ar/H2), the conductivity of both samples at 1173 K increases from 4.6 to 25 S/cm for LCF6 and from 0.5 to 10 S/cm for LCF5. For LCF5, the conductivity is shown to be virtually independent of the oxygen partial pressure throughout the studied intervals of temperature and partial pressure, whereas for LCF6 two regions are observed. The conductivity of LCF5 remains constant at the cyclic change of the atmosphere from air to the reductive atmosphere and back. The method of impedance spectroscopy is used for studying the electrochemical behavior in air of the porous electrode based on (La,Ca)(Fe,Mg,Mo)O3 – δ deposited on the solid electrolyte of Ce0.8Gd0.2O1.9 (GDC). The polarization resistance of the electrode/electrolyte interface (Rη) is found to be 2.7 and 3.6 Ω cm2 for electrodes of LCF5 and LCF6, respectively, at 1173 K. The partial substitution of Co for Fe allows the Rη value of La0.3Ca0.7Fe0.45Co0.05Mg0.25Mo0.25O3 – δ and La0.3Ca0.7Fe0.55Co0.05Mg0.175Mo0.225O3 – δ to be decreased to ∼1.2 Ω cm2. Moreover, these materials demonstrate the CTE values close to that of GDC and also exhibit the acceptable conductivity in both air and reductive atmosphere and, hence, can be recommended for using as the electrode material in symmetrical solid-oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Bastidas, D.M., Tao, S., and Irvine, J.T.S., A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes, J. Mater. Chem., 2006, vol. 16, p. 1603.

    Article  CAS  Google Scholar 

  2. Ruiz-Morales, C., Marrero-López, D., Canales-Vázquez, J., and Irvine, J.T.S., Symmetric and reversible solid oxide fuel cell, RSC Adv., 2011, vol. 1, p. 1403.

    Article  CAS  Google Scholar 

  3. Su, C., Wang, W., Liu, M., Tadé, M.O., and Shao, Z., Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes, Adv. Energy Mater., 2015, vol. 5, p. 1.

    Google Scholar 

  4. Ruiz-Morales, J.C., Canales-Vázquez, J., Peña-Martínez, J., Marrero-López, D., and Núñez, P., On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3 – δ as both anode and cathode material with improved microstructure in solid oxide fuel cells, Electrochim. Acta, 2006, vol. 52, p. 278.

    Article  CAS  Google Scholar 

  5. Zheng, Y., Zhang, C., Ran, R., Cai, R., Sao, Z., and Farrusseng, D., A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3 – δ perovskite oxide as both the anode and cathode, Acta Mater., 2009, vol. 57, p. 1165.

    Article  CAS  Google Scholar 

  6. Canales-Vázquez, J., Ruiz-Morales, J.C., Marrero-López, D., Peña-Martinez, J., Núñez, P., and Gomez-Romero, P., Fe-substituted (La,Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs), J. Power Sources, 2007, vol. 171, p. 552.

    Article  Google Scholar 

  7. Fagg, D.P., Kharton, V.V., Frade, J.R., and Ferreira, A.A.L. Stability and mixed ionic–electronic conductivity of (Sr,La)(Ti,Fe)O3 – δ perovskites, Solid State Ionics, 2003, vol. 156, p. 45.

    Article  CAS  Google Scholar 

  8. Park, C.Y. and Jacobson, A.J., Electrical conductivity and oxygen nonstoichiometry of La0.2Sr0.8Fe0.55Ti0.45O3 – δ, J. Electrochem. Soc., 2005, vol. 152, p. 65.

    Article  Google Scholar 

  9. Liu, Q., Dong, X., Xiao, G., Zhao, F., and Chen, F., Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fe1.5Mo0.5O6 electrodes by Ce0.8Sm0.2O1.9 nanoparticles, Adv. Mater., 2010, vol. 22, p. 5478.

    Article  CAS  Google Scholar 

  10. Zhang, L., Liu, Y., Zhang, Y., Xiao, G., Chen, F., and Xia, C., A novel electrode material for symmetrical SOFCs, Electrochem. Commun., 2011, vol. 13, p. 711.

    Article  CAS  Google Scholar 

  11. Goodenough, J.B., Metallic Oxides in Progress in Solid State Chemistry, Reiss, H., Ed., Oxford: Pergamon, 1971, vol. 5, p. 145.

    Google Scholar 

  12. Istomin, S.Ya., Morozov, A.V., Abdullayev, M.M., Batuk, M., Hadermann, J., Kazakov, S.M., Sobolev, A.V., Presniakov, I.A., and Antipov, E.V., High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3 – δ perovskites as prospective electrode materials for symmetrical SOFC, J. Solid State Chem., 2018, vol. 258, p. 1.

    Article  CAS  Google Scholar 

  13. Merkulov, O.V., Markov, A.A., Patrakeev, M.V., Leonidov, I.A., Shalaeva, E.V., Tyutyunnik, A.P., and Kozhevnikov, V.L., Structural features and high-temperature transport in SrFe0.7Mo0.3O3 – δ, J. Solid State Chem., 2018, vol. 258, p. 447.

    Article  CAS  Google Scholar 

  14. Fagg, D.P., Waerenborgh, J.C., Kharton, V.V., and Frade, J.R., Redox behavior and transport properties of La0.5 –xSr0.5 –xFe0.4Ti0.6O3 – δ (0 < x < 0.1) validated by Mössbauer spectroscopy, Solid State Ionics, 2002, vol. 146, p. 87.

    Article  CAS  Google Scholar 

  15. Hong, D.J.L. and Smyth, D.M., Defect chemistry of La2 –xSrxCuO4 –x/2 (0 < x ≤ 1), J. Solid State Chem., 1993, vol. 102, p. 250.

    Article  CAS  Google Scholar 

  16. Hong, D.J.L. and Smyth, D.M., Defect chemistry of undoped La2CuO4, J. Solid State Chem., 1992, vol. 97, p. 427.

    Article  CAS  Google Scholar 

  17. Merkulov, O.V., Naumovich, E.N., Patrakeev, M.V., Markov, A.A., Bouwmeester, H.J.M., Leonidov, I.A., and Kozhevnikov, V.L., Oxygen nonstoichiometry and defect chemistry of perovskite-structured SrFe1 –xMoxO3 – δ solid solutions, Solid State Ionics, 2016, vol. 292, p. 116.

    Article  CAS  Google Scholar 

  18. Patrakeev, M.V., Leonidov, I.A., Kozhevnikov, V.L., and Kharton, V.V., Ion–electron transport in strontium ferrites: relationships with structural features and stability, Solid State Sci., 2004, vol. 6, p. 907.

    Article  CAS  Google Scholar 

  19. Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy: Theory, Experiment, and Applications, New Jersey: Wiley, 2005.

    Book  Google Scholar 

  20. Co, A.C., Xia, S.J., and Birss, V.I., A kinetic study of the oxygen reduction reaction at LaSrMnO3–YSZ composite Electrodes, J. Electrochem. Soc., 2005, vol. 152, p. 570.

    Article  Google Scholar 

  21. Rupasov, D.P., Berenov, A.V., Kilner, J.A., Istomin, S.Ya., and Antipov, E.V. Oxygen diffusion in Sr0.75Y0.25CoO2.62, Solid State Ionics, 2011, vol. 197, p. 18.

    Article  CAS  Google Scholar 

  22. Istomin, S.Ya. and Antipov, E.V., Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells, Russ. Chem. Rev., 2013. vol. 82, p. 686.

    Article  Google Scholar 

  23. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A, 1976, vol. 32, p. 751.

    Article  Google Scholar 

  24. Tietz, F., Thermal expansion of SOFC materials, Ionics, 1999, vol. 5, p. 129.

    Article  CAS  Google Scholar 

  25. Uhlenbruck, S. and Tietz, F., High-temperature thermal expansion and conductivity of cobaltites: potentials for adaptation of the thermal expansion to the demands for solid oxide fuel cells, Mater. Sci. Eng., B, 2004, vol. 107, p. 277.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Scientific Foundation (grant no. 16-13-10327).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Morozov or S. Ya. Istomin.

Ethics declarations

The authors declare the absence of any conflict of interests.

Additional information

Translated by T. Safonova

Published on the basis of materials of the 5th All-Russia Conference “Fuel Cells and Power Plants Based on Them” (with international participation), Suzdal, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.V., Istomin, S.Y., Strebkov, D.A. et al. New Electrode Materials for Symmetrical Solid Oxide Fuel Cells Based on Perovskites (La,Ca)(Fe,Co,Mg,Mo)O3 – δ. Russ J Electrochem 56, 100–109 (2020). https://doi.org/10.1134/S1023193520020111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520020111

Keywords:

Navigation