Skip to main content
Log in

Electrochemical Properties of Electrode Materials Based on Pr5Mo3O16 + δ

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical activity of electrode materials based on Pr5Mo3O16 + δ (РМО), and applied on the surface of Ce0.9Gd0.1O1.95 (GDC) solid electrolyte is studied in the temperature range from 873 to 1173 K under oxidative (air) and reductive (Ar/H2) conditions. The polarization resistance (Rη) at 1073 K is found to be 8.8 and 4.8 Ω cm2 in air and in the reductive atmosphere, respectively. With the aim of enhancing the electrochemical activity of РМО in the oxygen reduction reaction, the electrochemical properties of PМО–xGDC and PМО–xPr6O11 composite electrodes are studied in air. The PМО–xPr6O11 composites are shown to be the best choice from the viewpoint of attaining the high electrochemical efficiency. When going from single-phase РМО to the PMO–xPr6O11 composite, a considerable decrease in Rη is observed (by an order of magnitude for х = 50 wt % Pr6O11, i.e., to 0.6 Ω cm2 at 1073 K in air). The data obtained here show that PMO can serve as the basis in elaborating the electrode material for symmetrical solid-oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Perovskite Oxide for Solid Oxide Fuel Cells, Ishihara, T. Ed., New York: Springer, 2009.

    Google Scholar 

  2. Bredikhin, S.I., Golodnitskii, A.E., Drozhzhin, O.A., Istomin, S.Ya., Kovalevskii, V.P., and Filippov, S.P., Statsionarnye energeticheskie ustanovki s toplivnymi elementami: materialy, tekhnologii, rynki (Stationary Power Stations with Fuel Cells: Materials, Technologies, Markets), Moscow, NTF Energoprogress, 2017.

  3. Ruiz-Morales, C., Marrero-López, D., Canales-Vázquez, J., and Irvine, J.T.S., Symmetric and reversible solid oxide fuel cell, RSC Adv., 2011, vol. 1, p. 1403.

    Article  CAS  Google Scholar 

  4. Su, C., Wang, W., Liu, M., Tadé, M.O., and Shao, Z., Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes, Adv. Energy Mater., 2015, vol. 5, p. 1.

    Google Scholar 

  5. Ni, C., Feng, J., Cui, J., Zhou, J., and Ni, J., An n-type oxideFe0.5Mg0.25Ti0.25Nb0.9Mo0.1O4 – δ for both cathode and anode of a solid oxide fuel cell, J. Electrochem. Soc., 2017, vol. 164, p. F283.

    Article  CAS  Google Scholar 

  6. Tsai, M., Greenblatt, M., and McCarroll, W.H., Oxide ion conductivity in Ln5Mo3O16 +x (Ln = La, Pr, Nd, Sm, Gd; x = 0.5), Chem. Mater., 1989. vol. 1, p. 253.

    Article  CAS  Google Scholar 

  7. Voronkova, V.I., Leonidov, I.A., Kharitonova, E.P., Belov, D.A., Patrakeev, M.V., Leonidova, O.N., and Kozhevnikov, V.L., Oxygen ion and electron conductivity in fluorite-like molybdates Nd5Mo3O16 and Pr5Mo3O16, J. Alloys Compd., 2014, vol. 615, p. 395.

    Article  CAS  Google Scholar 

  8. Biendicho, J.J., Playford, H.Y., Rahman, S.M.H., Norberg, S.T., Eriksson, S.G., and Hull, S., The fluorite-like phase Nd5Mo3O16 ± δ in the MoO3−Nd2O3 system: synthesis, crystal structure, and conducting properties, Inorg. Chem., 2018, vol. 57, p. 7025.

    Article  Google Scholar 

  9. Istomin, S.Ya., Kotova, A.I., Lyskov, N.V., Mazo, G.N., and Antipov, E.V., Pr5Mo3O16 + δ: A new anode material for solid oxide fuel cells, Russ. J. Inorg. Chem., 2018, vol. 63, p. 1291.

    Article  CAS  Google Scholar 

  10. High Temperature and Solid Oxide Fuel Cell: Fundamentals, Design and Applications, Singhal, S.C. and Kendall, K., Eds., Amsterdam: Elsevier, 2003.

    Google Scholar 

  11. Kenjo, T., Osawa, S., and Fujikawa, K. High-temperature air cathodes containing ion conductive oxides, J. Electrochem. Soc., 1991, vol. 138, p. 349.

    Article  CAS  Google Scholar 

  12. Kolchina, L.M., Lyskov, N.V., Petukhov, D.I., and Mazo, G.N., Electrochemical characterization of Pr2CuO4–Ce0.9Gd0.1O1.95 composite cathodes for solid oxide fuel cells, J. Alloys Compd., 2014, vol. 605, p. 89.

    Article  CAS  Google Scholar 

  13. Lyskov, N.V., Kolchina, L.M., Galin, M.Z., and Mazo, G.N., Development of lanthanum-doped praseodymium cuprates as cathode materials for intermediate-temperature solid oxide fuel cells, Solid State Ionics, 2018, vol. 319, p. 156.

    Article  CAS  Google Scholar 

  14. Taguchi, H., Chiba, R., Komatsu, T., Orui, H., Watanabe, K., and Hayashi, K., LNF SOFC cathodes with active layer using Pr6O11 or Pr-doped CeO2, J. Power Sources, 2013, vol. 241, p. 768.

    Article  CAS  Google Scholar 

  15. Vshivkova, A.I. and Gorelov, V.P., Activation of oxygen reaction by praseodymium oxide film on platinum electrode in contact with YSZ electrolyte, Russ. J. Electrochem., 2016, vol. 52, p. 488.

    Article  CAS  Google Scholar 

  16. Ding, X., Zhu, W., Hua, G., Li, J., and Wu, Z., Enhanced oxygen reduction activity on surface-decorated perovskite La0.6Ni0.4FeO3 cathode for solid oxide fuel cells, Electrochim. Acta, 2015, vol. 163, p. 204.

    Article  CAS  Google Scholar 

  17. Chiba, R., Taguchi, H., Komatu, T., Orui, H., Nozawa, K., and Araiet, H. High temperature properties of Ce1 –xPrxO2 – δ as an active layer material for SOFC cathodes, Solid State Ionics, 2011, vol. 197, p. 42.

    Article  CAS  Google Scholar 

  18. Liu, Q., Dong, X., Xiao, G., Zhao, F., and Chen, F., A novel electrode material for symmetrical SOFCs, Adv. Mater., 2010, vol. 22, p. 5478.

    Article  CAS  Google Scholar 

  19. Mazo, G.N., Lyskov, N.V., Istomin, S.Ya., and Antipov, E.V., Evaluation of La2CoTi0.7Mg0.3O6 as an electrode material for a symmetrical SOFC, J. Electroceram., 2018, vol. 40, p. 162.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Scientific Foundation (grant no. 16-13-10327). The electrochemical measurements were carried out in the frames of the State Project no. 0089-2019-0007 and, partially, by the Russian Foundation for Basic Research (grant no. 17-08-00831).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Lyskov.

Ethics declarations

The author declare the absence of any conflict of interests.

Additional information

Translated by T. Safonova

Published on the basis of materials of the 5th All-Russia Conference “Fuel Cells and Power Plants Based on Them” (with international participation), Suzdal, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyskov, N.V., Kotova, A.I., Istomin, S.Y. et al. Electrochemical Properties of Electrode Materials Based on Pr5Mo3O16 + δ. Russ J Electrochem 56, 93–99 (2020). https://doi.org/10.1134/S102319352002010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352002010X

Keywords:

Navigation