Skip to main content
Log in

The Use of Phosphorus in Sodium-Ion Batteries (A Review)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In the recent years, attention is focused on phosphorus as the active material for negative electrodes of sodium-ion rechargeable batteries because it demonstrates the maximum theoretical capacity with respect to sodium intercalation. The studies published since 2013 on sodium intercalation into red phorphorus, black phosphorus, and phosphorenes and also in phosphides of certain elements are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ellis, B.L. and Nazar, L.F., Sodium and sodium-ion energy storage batteries, Curr. Opin. Solid State Mater. Sci., 2012, vol. 16, p. 168.

    Article  CAS  Google Scholar 

  2. Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-Gonzalez, J., and Rojo, T., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci., 2012, vol. 5, p. 5884.

    Article  CAS  Google Scholar 

  3. Slater, M.D., Kim, D., Lee, E., and Johnson, Ch.S., Sodium-ion batteries, Adv. Funct. Mat., 2013,vol. 23, p. 947.

    Article  CAS  Google Scholar 

  4. Pan, H., Hu, Y.-S., and Chen, L., Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci., 2013,vol. 6, p. 2338.

    Article  CAS  Google Scholar 

  5. Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S., Research development on sodium-ion batteries, Chem. Rev., 2014, vol. 114, p. 11636.

    Article  CAS  PubMed  Google Scholar 

  6. Kubota, K. and Komaba, S., Review–Practical issues and future perspective for Na-ion batteries, J. Electrochem. Soc., 2015, vol. 162, p. A2538.

    Article  CAS  Google Scholar 

  7. Kundu, D., Talaie, E., Duffort, V., and Nazar, L.F., The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem., Int. Ed., 2015, vol. 54, p. 3431.

    Article  CAS  Google Scholar 

  8. Kulova, T.L. and Skundin, A.M., From lithium-ion to sodium-ion battery, Russ. Chem. Bull., 2017, vol. 66, no. 8, p. 1329.

    Article  CAS  Google Scholar 

  9. Skundin, A.M., Kulova, T.L., and Yaroslavtsev, A.B., Sodium-ion batteries (A review), Russ. J. Electrochem., 2018, vol. 54, p. 113.

    Article  CAS  Google Scholar 

  10. Delmas, C., Sodium and sodium-ion batteries: 50 years of research, Adv. Energy Mater., 2018, vol. 8, no. 17, Article no. 1703137.

    Article  CAS  Google Scholar 

  11. Deng, J., Luo, W.-B., Chou, S.-L., Liu, H.-K., and Dou, S.-X., Sodium-ion batteries: From academic research to practical commercialization, Adv. Energy Mater., 2018, vol. 8, no. 4, Article no. 1701428.

    Article  CAS  Google Scholar 

  12. Kim, S.-W., Seo, D.-H., Ma, X., Ceder, G., and Kang, K., Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries, Adv. Energy Mater., 2012, vol. 2, p. 710.

    Article  CAS  Google Scholar 

  13. Ong, S.P., Chevrier, V.L., Hautier, G., Jain, A., Moore, C., Kim, S., Ma, X., and Ceder, G., Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials, Energy Environ. Sci., 2011, vol. 4, p. 3680.

    Article  CAS  Google Scholar 

  14. Hong, S.Y., Kim, Y., Park, Y., Choi, A., Choi, N.-S., and Lee, K.T., Charge carriers in rechargeable batteries: Na ions vs. Li ions, Energy Environ. Sci., 2013, vol. 6, p. 2067.

    Article  CAS  Google Scholar 

  15. Li, L., Zheng, Y., Zhang, S., Yang, J., Shao, Z., and Guo, Z., Recent progress on sodium ion batteries: potential high-performance anodes, Energy Environ. Sci., 2018, vol. 11, p. 2310.

    Article  CAS  Google Scholar 

  16. Xu, J., Lee, D.H., and Meng, Y.S., Recent advances in sodium intercalation positive electrode materials for sodium ion batteries, Funct. Mater. Lett., 2013, vol. 6, Article no. 1330001.

    Article  CAS  Google Scholar 

  17. Xiang, X., Zhang, K., and Chen, J., Recent advances and prospects of cathode materials for sodium-ion batteries, Adv. Mater., 2015, vol. 27, p. 5343.

    Article  CAS  PubMed  Google Scholar 

  18. Kubota, K., Yabuuchi, N., Yoshida, H., Dahbi, M., and Komaba, S., Layered oxides as positive electrode materials for Na-ion batteries, MRS Bull., 2014, vol. 39, p. 416.

    Article  CAS  Google Scholar 

  19. Han, M.H., Gonzalo, E., Singh, G., and Rojo, T., A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries, Energy Environ. Sci., 2015, vol. 8, p. 81.

    Article  CAS  Google Scholar 

  20. Clément, R.J., Bruce, P.G., and Grey, C.P., Review—Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials, J. Electrochem. Soc., 2015, vol. 162, p. A2589.

    Article  CAS  Google Scholar 

  21. Masquelier, C. and Croguennec, L., Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries, Chem. Rev., 2013, vol. 113, p. 6552.

    Article  CAS  PubMed  Google Scholar 

  22. Yabuuchi, N. and Komaba, S., Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries, Sci. Technol. Adv. Mater., 2014, vol. 15, Article no. 043501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Toumar, A.J., Ong, S.P., Richards, W.D., Dacek, S., and Ceder, G., Vacancy ordering in O3-type layered metal oxide sodium-ion battery cathodes, Phys. Rev. Appl., 2015, vol. 4, Article no. 064002.

    Article  CAS  Google Scholar 

  24. Kim, Y., Park, Y., Choi, A., Choi, N.-S., Kim, J., Lee, J., Ryu, J.H., Oh, S.M., and Lee, K.T., An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries, Adv. Mater., 2013,vol. 25,p. 3045.

    Article  CAS  PubMed  Google Scholar 

  25. Fu, Y., Wei, Q., Zhang, G., and Sun, S., Advanced phosphorus-based materials for lithium/sodium-ion batteries: Recent developments and future perspectives, Adv. Energy Mater., 2018, vol. 8, no. 13, Article no. 1702849.

    Google Scholar 

  26. Zhao, D., Zhang, L., Fu, C., Zhang, J., and Niu, C., The lithium and sodium storage performances of phosphorus and its hierarchical structure, Nano Res., 2019, vol. 12, no. 1, p. 1.

    Article  CAS  Google Scholar 

  27. Liu, W., Zhi, H., and Yu, X., Recent progress in phosphorus based anode materials for lithium/sodium-ion batteries, Energy Storage Mater., 2019, vol. 16,p. 290.

    Article  Google Scholar 

  28. Mei, P., Kim, J., Kumar, N.A., Pramanik, M., Kobayashi, N., Sugahara, Y., and Yamauchi, Y., Phosphorus-based mesoporous materials for energy storage and conversion, Joule, 2018, vol. 2, p. 2289.

    Article  CAS  Google Scholar 

  29. Han, X., Han, J., Liu, C., and Sun, J., Promise and challenge of phosphorus in science, technology, and application, Adv. Funct. Mater., 2018, vol. 28, Article no. 1803471.

    Article  CAS  Google Scholar 

  30. Li, Z. and Zhao, H., Recent developments of phosphorus-based anodes for sodium ion batteries, J. Mater. Chem. A, 2018, vol. 6, p. 24013.

    Article  CAS  Google Scholar 

  31. Zhou, J., Liu, X., Cai, W., Zhu, Y., Liang, J., Zhang, K., Lan, Y., Jiang, Z., Wang, G., and Qian, Y., Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries, Adv. Mater., 2017, vol. 29, no. 29, Article no. 1700214.

    Article  CAS  Google Scholar 

  32. Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek D., and Ye, P.D., Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano, 2014, vol. 8, p. 4033.

    Article  CAS  PubMed  Google Scholar 

  33. Bagheri, S., Mansouri, N., and Aghaie, E., Phosphorene: A new competitor for graphene (Review), Int. J. Hydrogen Energy, 2016, vol. 41, p. 4085.

    Article  CAS  Google Scholar 

  34. Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., and Castro Neto H., Phosphorene: From theory to applications (Review), Nat. Rev. Mater., 2016, vol. 1, no. 11, Article no. 16061.

    Article  CAS  Google Scholar 

  35. Liu, H., Du, Y., Deng, Y., and Ye, P.D., Semiconducting black phosphorus: Synthesis, transport properties and electronic applications (Review), Chem. Soc. Rev., 2015, vol. 44, p. 2732.

    Article  CAS  PubMed  Google Scholar 

  36. Guo, Z., Ding, W., Liu, X., Sun, Z., and Wei, L., Two-dimensional black phosphorus: A new star in energy applications and the barrier to stability, Appl. Mater. Today, 2019, vol. 14, p. 51.

    Article  Google Scholar 

  37. Qiu, M., Sun, Z.T., Sang, D.K., Han, X.G., Zhang, H., and Niu, C.M., Current progress in black phosphorus materials and their applications in electrochemical energy storage, Nanoscale, 2017, vol. 9, p. 13384.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, H., Hu, K., Yan, D., Chen, R., Zou, Y., Liu, H., and Wang, S., Recent advances on black phosphorus for energy storage, catalysis, and sensor applications, Adv. Mater., 2018, vol. 30, no. 32, Article no.1800295.

    Article  CAS  Google Scholar 

  39. Keyes, R.W., The electrical properties of black phosphorus, Phys. Rev., 1953, vol. 92, p. 580.

    Article  CAS  Google Scholar 

  40. Bridgman, P.W., Two new modifications of phosphorus, J. Am. Chem. Soc., 1914, vol. 36, p. 1344.

    Article  CAS  Google Scholar 

  41. Endo, S., Akahama, Y., Terada, S.-I., and Narita, S.-I., Growth of large single crystals of black phosphorus under high pressure, Jap. J. Appl. Phys., 1982, vol. 21, part 2, no. 8, p. L482.

  42. Lange, S., Schmidt, P., and Nilges, T., Au3SnP7@black phosphorus: An easy access to black phosphorus, Inorg. Chem., 2007, vol. 46, p. 4028.

    Article  CAS  PubMed  Google Scholar 

  43. Köpf, M., Eckstein, N., Pfister, D., Grotz, C., Krüger, I., Greiwe, M., Hansen, T., Kohlmann, H., and Nilges, T., Access and in situ growth of phosphorene-precursor black phosphorus, J. Cryst. Growth, 2014, vol. 405, p. 6.

    Article  CAS  Google Scholar 

  44. Park, C.M. and Sohn, H.J., Black phosphorus and its composite for lithium rechargeable batteries, Adv. Mater., 2007, vol. 19, p. 2465.

    Article  CAS  Google Scholar 

  45. Sangster, J.M., Na–P (sodium–phosphorus) system, J. Phase Equilib. Diffus., 2010, vol. 31, p. 62.

    Article  CAS  Google Scholar 

  46. Mayo, M., Griffith, K.J., Pickard, C.J., and Morris, A.J., Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries, Chem. Mater., 2016, vol. 28, p. 2011.

    Article  CAS  Google Scholar 

  47. Mortazavi, M., Ye, Q., Birbilis, N., and Medhekar, N.V., High capacity group-15 alloy anodes for Na-ion batteries: Electrochemical and mechanical insights, J. Power Sources, 2015, vol. 285, p. 29.

    Article  CAS  Google Scholar 

  48. Qian, J., Wu, X., Cao, Y., Ai, X., and Yang, H., High capacity and rate capability of amorphous phosphorus for sodium ion batteries., Angew. Chem. Int. Ed., 2013, vol. 52, p. 4633.

    Article  CAS  Google Scholar 

  49. Qian, J., Qiao, D., Ai, X., Cao, Y., and Yang, H., Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries, Chem. Commun., 2012, vol. 48, p. 8931.

    Article  CAS  Google Scholar 

  50. Kim, Y., Hwang, S.M., Yu, H., and Kim, Y., High energy density rechargeable metal-free seawater batteries: a phosphorus/carbon composite as a promising anode material, J. Mater. Chem. A, 2018, vol. 6, p. 3046.

    Article  CAS  Google Scholar 

  51. Li, W.-J., Chou, S.-L., Wang, J.-Z., Liu, H.-K., and Dou, S.-X., Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage, Nano Lett., 2013, vol. 13, p. 5480.

    Article  CAS  PubMed  Google Scholar 

  52. Song, J., Yu, Z., Gordin, M.L., Hu, S., Yi, R., Tang, D., Walter, T., Regula, M., Choi, D., Li, X., Manivannan, A., and Wang, D., Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries, Nano Lett., 2014, vol. 14, p. 6329.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou, X., Yin, Y.-X., Wan, L.-J., and Guo, Y.-G., Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries, Chem. Commun., 2012, vol. 48, p. 2198.

    Article  CAS  Google Scholar 

  54. Xin, X., Zhou, X., Wang, F., Yao, X., Xu, X., Zhu, Y., and Liu, Z., A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries, J. Mater. Chem., 2012, vol. 22, p. 7724.

    Article  CAS  Google Scholar 

  55. Feng, N., Liang, X., Pu, X., Li, M., Liu, M., Cong, Z., Sun, J., Song, W., and Hu, W., Rational design of red phosphorus/reduced graphene oxide composites for stable sodium ion storage, J. Alloys Compd., 2019, vol. 775, p. 1270.

    Article  CAS  Google Scholar 

  56. Li, W.-J., Chou, S.-L., Wang, J.-Z., Liu, H.-K., and Dou, S.-X., Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P–C), J. Mater. Chem. A, 2016, vol. 4, p. 505.

    Article  CAS  Google Scholar 

  57. Lee, G.H., Jo, M.R., Zhang, K., and Kang, Y.M., A reduced graphene oxide-encapsulated phosphorus/carbon composite as a promising anode material for high-performance sodium-ion batteries, J. Mater. Chem. A,2017,vol. 5,p. 3683.

    Article  CAS  Google Scholar 

  58. Ding, X.L., Huang, Y.Y., Li, G.L., Tang, Y., Li, X.C., and Huang, Y.H., Phosphorus nanoparticles combined with cubic boron nitride and graphene as stable sodium ion battery anodes, Electrochim. Acta, 2017, vol. 235, p. 150.

    Article  CAS  Google Scholar 

  59. Zhao,Q., Meng,Y., Yang, L., He,X., He,B., Liu,Y., and Xiao, D., Facile synthesis of phosphorus-doped carbon under tuned temperature with high lithium and sodium anodic performances, J. Colloid Interface Sci., 2019, vol. 551, p. 61.

    Article  CAS  PubMed  Google Scholar 

  60. Song, J., Yu, Z., Gordin, M.L., Li, X., Peng, H. and Wang, D., Advanced sodium-ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube and cross linked polymer binder, ACS Nano, 2015, vol. 9, p. 11933.

    Article  CAS  PubMed  Google Scholar 

  61. Liu, W., Yuan, X., and Yu, X., Core–shell structure of polydopamine-coated phosphorus-carbon nanotube composite for high-performance sodium-ion batteries, Nanoscale, 2018, vol. 10, p. 16675.

    Article  CAS  PubMed  Google Scholar 

  62. Walter, M., Erni, R.,and Kovalenko, M.V., Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries, Sci. Rep., 2015, vol. 5, p. 8418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Darwiche, A., Marino, C., Sougrati, M.T., Fraisse, B., Stievano, L., and Monconduit, L., Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism, J. Amer. Chem. Soc., 2012, vol. 134, p. 20805.

    Article  CAS  Google Scholar 

  64. Liang, L., Xu, Y., Wang, C., Wen, L., Fang, Y., Mi, Y., Zhou, M., Zhao, H., and Lei, Y., Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries, Energy Environ. Sci., 2015, vol. 8, p. 2954.

    Article  CAS  Google Scholar 

  65. Saubanère, M., Yahia, M.B., Lemoigno, F., and Doublet, M.-L., Influence of polymorphism on the electrochemical behavior of MxSb negative electrodes in Li/Na batteries, J. Power Sources, 2015, vol. 280, p. 695.

    Article  CAS  Google Scholar 

  66. He, M., Kravchyk, K., Walter, M., and Kovalenko, M.V., Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk, Nano Lett., 2014, vol. 14, p. 1255.

    Article  CAS  PubMed  Google Scholar 

  67. Chin, L.-C., Yi, Y.-H., Chang, W.-C., and Tuan, H.-Y., Significantly improved performance of red phosphorus sodium-ion anodes with the addition of iron, Electrochim. Acta, 2018, vol. 266, p. 178.

    Article  CAS  Google Scholar 

  68. Marino, C., Debenedetti, A., Fraisse, B., Favier, F., and Monconduit, L., Activated phosphorus as new electrode material for Li-ion batteries, Electrochem. Comm., 2011, vol. 13, p. 346.

    Article  CAS  Google Scholar 

  69. Wang, L., He, X., Li, J., Sun, W., Gao, J., Guo, J., and Jiang, C., Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries, Angew. Chem. Int. Ed., 2012, vol. 51, p. 9034.

    Article  CAS  Google Scholar 

  70. Zhu, Y., Wen, Y., Fan, X., Gao, T., Han, F., Luo, C., Liou, S.-C., and Wang, C., Red phosphorus–single-walled carbon nanotube composite as a superior anode for sodium ion batteries, ACS Nano, 2015, vol. 9, p. 3254.

    Article  CAS  PubMed  Google Scholar 

  71. Ruan, B., Wang, J., Shi, D., Xu, Y., Chou, S., Liu, H., and Wang, J., A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 19011.

    Article  CAS  Google Scholar 

  72. Xu, J., Ding, J., Zhu, W., Zhou, X., Ge, S., and Yuan, N., Nano-structured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries, Sci. China Mater., 2018, vol. 61, p. 371.

    Article  CAS  Google Scholar 

  73. Li, W., Yang, Z., Li, M., Jiang, Y., Wei, X., Zhong, X., Gu, L., and Yu, Y., Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity, Nano Lett., 2016, vol. 16, p. 1546.

    Article  CAS  PubMed  Google Scholar 

  74. Ryoo, R.,Joo, S.H., Kruk, M., and Jaroniec, M., Ordered mesoporous carbons, Adv. Mater., 2001, vol. 13, p. 677.

    Article  CAS  Google Scholar 

  75. Lee, J., Kim, J., and Hyeon, T., Recent progress in the synthesis of porous carbon materials, Adv. Mater., 2006, vol. 18, p. 2073.

    Article  CAS  Google Scholar 

  76. Yu, Z., Song, J., Wang, D., and Wang, D., Advanced anode for sodium-ion battery with promising long cycling stability achieved by tuning phosphorus-carbon nanostructures, Nano Energy, 2017, vol. 40, p. 550.

    Article  CAS  Google Scholar 

  77. Yao, S., Cui, J., Huang, J., Huang, J.-Q., Chong, W.G., Qin, L., Mai, Y.-W., and Kim, J.-K., Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries, Adv. Energy Mater., 2018, vol. 8, Article no. 1702267.

    Article  CAS  Google Scholar 

  78. Zhang, C., Wang, X., Liang, Q., Liu, X., Weng, Q., Liu, J., Yang, Y., Dai, Z., Ding, K., Bando, Y., Tang, J., and Golberg, D., Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries, Nano Lett., 2016, vol. 16, p. 2054.

    Article  CAS  PubMed  Google Scholar 

  79. Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., and Coleman, J.N., Liquid exfoliation of layered materials, Science, 2013, vol. 340, p. 1420.

    Article  CAS  Google Scholar 

  80. Huang, Y., Sutter, E., Shi, N.N., Zheng, J., Yang, T., Englund, D., Gao, H.-J., and Sutter, P., Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials, ACS Nano, 2015, vol. 9, p. 10612.

    CAS  PubMed  Google Scholar 

  81. Pei, L., Zhao, Q., Chen, C., Liang, J., and Chen, J., Phosphorus nanoparticles encapsulated in graphene scrolls as a high-performance anode for sodium-ion batteries, ChemElectroChem, 2015, vol. 2, p. 1652.

    Article  CAS  Google Scholar 

  82. Gao, H., Zhou, T., Zheng, Y., Liu, Y., Chen, J., Liu, H., and Guo, Z., Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries, Adv. Energy Mater., 2016, vol. 6, Article no. 1601037.

    Article  CAS  Google Scholar 

  83. Liu, Y., Zhang, A., Shen, C., Liu, Q., Cao, X., Ma, Y., Chen, L.,Lau, C., Chen, T.C., Wei, F., and Zhou, C., Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries, ACS Nano, 2017, vol. 11, p. 5530.

    Article  CAS  PubMed  Google Scholar 

  84. Li, J., Wang, L., Wang, Z., Tian, G., and He, X., Economic and high performance phosphorus–carbon composite for lithium and sodium storage, ACS Omega, 2017, vol. 2, p. 4440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu, N., Yao, H.-R., Yin, Y.-X., and Guo, Y.-G., Improving the electrochemical properties of the red P anode in Na-ion batteries via the space confinement of carbon nanopores, J. Mater. Chem. A, 2015, vol. 3, p. 24221.

    Article  CAS  Google Scholar 

  86. Wu, Y., Liu, Z., Zhong, X., Cheng, X., Fan, Z., and Yu, Y., Amorphous red phosphorus embedded in sandwiched porous carbon enabling superior sodium storage performances, Small, 2018, vol. 14, Article no. 1703472.

    Article  CAS  Google Scholar 

  87. Ma, X., Chen, L., Ren, X., Hou, G., Chen, L., Zhang, L., Liu, B., Ai, Q., Zhang, L., Si, P., Lou, J., Feng, J., and Ci, L., High performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries, J. Mater. Chem., A, 2018, vol. 6, p. 1574.

    Article  CAS  Google Scholar 

  88. Li, W., Hu, S., Luo, X., Li, Z., Sun, X., Li, M., Liu, F., and Yu, Y., Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery, Adv. Mater., vol. 29, Article no. 1605820.

  89. Sun, J., Lee, H.-W., Pasta, M., Sun, Y., Liu, W., Li, Y., Lee, H.R., Liu, N., and Cui, Y., Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries, Energy Storage Mater., 2016, vol. 4, p. 130.

    Article  Google Scholar 

  90. Zeng, G., Hu, X., Zhou, B., Chen, J., Cao, C., and Wen, Z., Engineering graphene with red phosphorus quantum dots for superior hybrid anodes of sodium-ion batteries, Nanoscale, 2017, vol. 9, no. 38, p. 14722.

    Article  CAS  PubMed  Google Scholar 

  91. Liu, Y., Zhang, N., Liu, X., Chen, C., Fan, L.-Z., and Jiao, L., Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries, Energy Storage Mater., 2017, vol. 9, p. 170.

    Article  Google Scholar 

  92. Zhang, Y., Zheng, Y., Rui, K., Hng, H.H., Hippalgaonkar, K., Xu, J., Sun, W., Zhu, J., Yan, Q., and Huang, W., 2D black phosphorus for energy storage and thermoelectric applications, Small, 2017, vol. 13, no. 28, Article no. 1700661.

    Article  CAS  Google Scholar 

  93. Qiao, J., Kong, X., Hu, Z.-X., Yang, F., and Ji, W., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Comm., 2014, vol. 5, Article no. 4475.

  94. Xia, F., Wang, H., and Jia, Y., Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Comm., 2014, vol. 5, Article no. 4458.

  95. Nie, A., Cheng, Y., Ning, S., Foroozan, T., Yasaei, P., Li, W., Song, B., Yuan, Y., Chen, L., Salehi-Khojin, A., Mashayek, F., and Shahbazian-Yassar, R., Selective ionic transport pathways in phosphorene, Nano Lett., 2016, vol. 16, p. 2240.

    Article  CAS  PubMed  Google Scholar 

  96. Chen, T., Zhao, P., Guo, X., and Zhang, S., Two-fold anisotropy governs morphological evolution and stress generation in sodiated black phosphorus for sodium ion batteries, Nano Lett., 2017, vol. 17, no. 4, p. 2299.

    Article  CAS  PubMed  Google Scholar 

  97. Hembram, K.P.S.S., Jung, H., Yeo, B.C., Pai, S.J., Kim, S., Lee, K.-R., and Han, S.S., Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations, J. Phys. Chem. C, 2015, vol. 119, p. 15041.

    Article  CAS  Google Scholar 

  98. Cheng, Y., Zhu, Y., Han, Y., Liu, Z., Y ang, B., Nie, A., Huang, W., Shahbazian-Yassar, R., and Mashayek, F., Sodium-induced reordering of atomic stacks in black phosphorus, Chem. Mater., 2017, vol. 29, p. 1350.

    Article  CAS  Google Scholar 

  99. Yu, X.-F., Giorgi, G., Ushiyama, H., and Yamashita, K., First-principles study of fast Na diffusion in Na3P, Chem. Phys. Lett., 2014, vol. 612, p. 129.

    Article  CAS  Google Scholar 

  100. Dahbi, M., Yabuuchi, N., Fukunishi, M., Kubota, K., Chihara, K., Tokiwa, K., Yu, X.-F., Ushiyama, H., Yamashita, K., Son, J.-Y., Cui, Y.-T., Oji, H., and Komaba, S., Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface, Chem. Mater., 2016, vol. 28, no. 6, p. 1625.

    Article  CAS  Google Scholar 

  101. Ramireddy, T., Xing, T., Rahman, M.M., Chen, Y., Dutercq, Q., Gunzelmann, D., and Glushenkov, A.M., Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 5572.

    Article  CAS  Google Scholar 

  102. Xu, G.L., Chen, Z.H., Zhong, G.M., Liu, Y.Z., Yang, Y., Ma, T.Y., Ren, Y., Zuo, X.B., Wu, X.H., Zhang, X.Y., and Amine, K., Nanostructured black phosphorus/Ketjen black–multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries, Nano Lett, 2016, vol. 16, p. 3955.

    Article  CAS  PubMed  Google Scholar 

  103. Liu, H., Tao, L., Zhang, Y., Xie, C., Zhou, P., Chen, R., and Wang, S., Bridging covalently functionalized black phosphorus on graphene for high-performance sodium-ion battery, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 42, p. 36849.

    Article  CAS  PubMed  Google Scholar 

  104. Xu, Y., Wang, Z., Guo, Z., Huang, H., Xiao, Q., Zhang, H., and Yu, X.F., Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots, Adv. Opt. Mater., 2016, vol. 4,p. 1223.

    Article  CAS  Google Scholar 

  105. Zhang, Y., Sun, W., Luo, Z.-Z., Zheng, Y., Yu, Z., Zhang, D., Yang, J., Tan, H.T., Zhu, J., Wang, X., Yan, Q., and Dou, S.X., Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries, Nano Energy, 2017, vol. 40, p. 576.

    Article  CAS  Google Scholar 

  106. Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W., Palacios, J.J., and Van Der Zant, H.S.J., Isolation and characterization of few-layer black phosphorus, 2D Mater., 2014, vol. 1, no. 2, Article no. A6(025001).

  107. Hanlon, D., Backes, C., Doherty, E., Cucinotta, C.S., Berner, N.C., Boland, C., Lee, K., Harvey, A., Lynch, P., Gholamvand, Z., Zhang, S., Wang, K., Moynihan, G., Pokle, A., Ramasse, Q.M., et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics, Nat. Commun., 2015, vol. 6, Article no. 8563.

    Article  CAS  PubMed  Google Scholar 

  108. Hu, Z., Niu, T., Guo, R., Zhang, J.,Lai, M., He, J., Wang,L. and Chen, W., Two-dimensional black phosphorus: its fabrication, functionalization and applications, Nanoscale, 2018, vol. 10, p. 21575.

    Article  CAS  PubMed  Google Scholar 

  109. Brent, J.R., Savjani, N., Lewis, E.A., Haigh, S.J., Lewis, D.J., and O’Brien, P., Production of few-layer phosphorene by liquid exfoliation of black phosphorus, Chem. Comm., 2014, vol. 50, p. 13338.

    Article  CAS  PubMed  Google Scholar 

  110. Late, D.J., Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor, Microporous Mesoporous Mater., 2016, vol. 225, p. 494.

    Article  CAS  Google Scholar 

  111. Pang, J., Bachmatiuk, A., Yin, Y., Trzebicka, B., Zhao, L., Fu, L., Mendes, R.G., Gemming, T., Liu, Z., and Rummeli, M.H., Applications of phosphorene and black phosphorus in energy conversion and storage devices, Adv. Energy Mater., 2018, vol. 8, no. 8, Article no. 17020 93.

  112. Kulish, V.V., Malyi, O.I., Persson, C., and Wu, P., Phosphorene as an anode material for Na-ion batteries: a first-principles study, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 13921.

    Article  CAS  PubMed  Google Scholar 

  113. Liu, X., Wen, Y., Chen, Z., Shan, B., and Chen, R., A first-principles study of sodium adsorption and diffusion on phosphorene, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 16398.

    Article  CAS  PubMed  Google Scholar 

  114. Sun, X. and Wang, Z., Sodium adsorption and diffusion on monolayer black phosphorus with intrinsic defects, Appl. Surf. Sci., 2018, vol. 427, p. 189.

    Article  CAS  Google Scholar 

  115. Sun, J., Lee, H.W., Pasta, M., Yuan, H., Zheng, G., Sun, Y., Li, Y., and Cui, Y., A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries, Nat. Nanotechnol., 2015, vol. 10, p. 980.

    Article  CAS  PubMed  Google Scholar 

  116. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol., 2008, vol. 3, p. 563.

    Article  CAS  PubMed  Google Scholar 

  117. Chowdhury, C., Karmakar, S., and Datta, A., Capping black phosphorene by hBN enhances performances in anodes for Li and Na ion batteries, ACS Energy Lett., 2016, vol. 1, p. 253.

    Article  CAS  Google Scholar 

  118. Kim, Y., Kim, Y., Choi, A., Woo, S., Mok, D., Choi, N.-S., Jung, Y.S., Ryu, J.H., Oh, S.M., and Lee, K.T., Tin phosphide as a promising anode material for Na-ion batteries, Adv. Mater., 2014, vol. 26, p. 4139.

    Article  CAS  PubMed  Google Scholar 

  119. Olofsson, O., On the crystal structure of Sn4P3, Acta Chem. Scand.,1967,vol. 21,p. 1659.

    Article  CAS  Google Scholar 

  120. Qian, J.F., Xiong, Y., Cao, Y.L., Ai, X.P., and Yang, H.X., Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries, Nano Lett., 2014, vol. 14, p. 1865.

    Article  CAS  PubMed  Google Scholar 

  121. Li, W.J., Chou, S.-L., Wang, J.-Z., Kim, J.H., Liu, H.-K., and Dou, S.-X., Sn4 + xP3@amorphous Sn–P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability, Adv. Mater., 2014, vol. 26, p. 4037.

    Article  CAS  PubMed  Google Scholar 

  122. Liu, S., Zhang, H., Xu, L., Ma, L., and Chen, X., Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries, J. Power Sources, 2016, vol. 304, p. 346.

    Article  CAS  Google Scholar 

  123. Liu, J., Kopold, P., Wu, C., Aken, P.A., Maier, J., and Yu, Y., Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries, Energy Environ. Sci., 2015, vol. 8, p. 3531.

    Article  CAS  Google Scholar 

  124. Lou, X.W., Wang, Y., Yuan, C., Lee, J.Y., and Archer, L.A., Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater., 2006, vol. 18, p. 2325.

    Article  CAS  Google Scholar 

  125. Liu, J., Wen, Y.R., Wang, Y., van Aken, P.A., Maier, J., and Yu, Y., Carbon-encapsulated pyrite as stable and Earth-abundant high energy cathode material for rechargeable lithium batteries, Adv. Mater., 2014, vol. 26, p. 6025.

    Article  CAS  PubMed  Google Scholar 

  126. Kovnir, K.A., Kolen’ko, Y.V., Ray, S., Li, J., Watanabe, T., Itoh, M., Yoshimura, M., and Shevelkov, A.V., A facile high-yield solvothermal route to tin phosphide Sn4P3, J. Solid State Chem., 2006, vol. 179, p. 3756.

    Article  CAS  Google Scholar 

  127. Li, Q., Li, Z.Q., Zhang, Z.W., Li, C.X., Ma, J.Y., Wang, C.X., Ge, X.L., Dong, S.H., and Yin, L.W., Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries, Adv. Energy Mater., 2016, vol. 6, Article no. 1600376.

    Article  CAS  Google Scholar 

  128. Wang, G., Wang, B., Wang, X., Park, J., Dou, S., Ahn, H., and Kim, K., Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries, J. Mater. Chem., 2009, vol. 19, p. 8378.

    Article  CAS  Google Scholar 

  129. Pan, E., Jin, Y., Zhao, C., Jia, M., Chang, Q., Zhang, R., and Jia, M., Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries, Appl. Surf. Sci., 2019, vol. 475, p. 12.

    Article  CAS  Google Scholar 

  130. Fan, X.L., Mao, J.F., Zhu, Y.J., Luo, C., Suo, L.M., Gao, T., Han, F.D., Liou, S.-C., and Wang, C.S., Superior stable self-healing SnP3 anode for sodium-ion batteries, Adv. Energy Mater., 2015, vol. 5, no. 18, Article no. 1500174.

    Article  CAS  Google Scholar 

  131. Suryanarayana, C., Mechanical alloying and milling, Progr. Mater. Sci., 2001,vol. 46, no. 1–2, p. 1.

    Article  CAS  Google Scholar 

  132. Fan, X., Shao, J., Xiao, X., Wang, X., Li, S., Ge, H., and Chen, L., SnLi4.4 nanoparticles encapsulated in carbon matrix as high performance anode material for lithium-ion batteries, Nano Energy, 2014, vol. 9, p. 196.

    Article  CAS  Google Scholar 

  133. Fullenwarth, J., Darwiche, A., Soares, A., Donnadieu, B., and Monconduit, L., NiP3: a promising negative electrode for Li- and Na-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 2050.

    Article  CAS  Google Scholar 

  134. Wu, C., Kopold, P., Aken, P.A.V., Maier, J., and Yu, Y., High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design, Adv. Mater., 2017, vol. 29, Article no. 1604015.

    Article  CAS  Google Scholar 

  135. Zheng, J., Huang, X., Pan, X., Teng, C., and Wang, N., Yolk-shelled Ni2P@carbon nanocomposite as high-performance anode material for lithium and sodium ion batteries, Appl. Surf. Sci., 2019, vol. 473, p. 699.

    Article  CAS  Google Scholar 

  136. Zhou, D., Xue, L.-P., and Wang, N., Robustly immobilized Ni2P nanoparticles in porous carbon networks promotes high-performance sodium-ion storage, J. Alloys Compd., 2019, vol. 776, p. 912.

    Article  CAS  Google Scholar 

  137. Li, H., Wang, X., Zhao, Z., Tian, Z., Zhang, D., and Wu, Y., Ni2P nanoflake array/three dimensional graphene architecture as integrated free-standing anode for boosting the sodiation capability and stability, ChemElectroChem, 2019, vol. 6, p. 404.

    Article  CAS  Google Scholar 

  138. Wang, J., Wang, B., Liu, X., Wang, G., Wang, H., and Bai, J., Construction of carbon-coated nickel phosphide nanoparticle assembled submicrospheres with enhanced electrochemical properties for lithium/sodium-ion batteries, J. Colloid Interface Sci., 2019, vol. 538, p. 187.

    Article  CAS  PubMed  Google Scholar 

  139. Zhao, F.P., Han, N., Huang, W.J., Li, J.J., Ye, H.L., Chen, F.J., and Li, Y.G., Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 21754.

    Article  CAS  Google Scholar 

  140. Kim, S.-O. and Manthiram, A., The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP2/C hybrid anode, Chem. Commun., 2016, vol. 52, p. 4337.

    Article  CAS  Google Scholar 

  141. Fan, M.P., Chen, Y., Xie, Y.H., Yang, T.Z., Shen, X.W., Xu, N., Yu, H.Y., and Yan, C.L., Half cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes, Adv. Funct. Mater., 2016, vol. 26, p. 5019.

    Article  CAS  Google Scholar 

  142. Yang, Q.-R., Li, W.-J., Chou, S.-L., Wang, J.-Z., and Liu, H.-K., Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery, RSC Adv., 2015, vol. 5, p. 80536.

    Article  CAS  Google Scholar 

  143. Li, W.-J., Chou, S.-L., Wang, J.-Z., Liu, H.-K., and Dou, S.-X., A new, cheap, and productive FeP anode material for sodium-ion batteries, Chem. Commun., 2015, vol. 51, p. 3682.

    Article  CAS  Google Scholar 

  144. Han, F., Tan, C.Y.J., and Gao, Z., Improving the specific capacity and cyclability of sodium-ion batteries by engineering a dual-carbon phase-modified amorphous and mesoporous iron phosphide, ChemElectroChem, 2016, vol. 3, p. 1054.

    Article  CAS  Google Scholar 

  145. Li, W.-J., Yang, Q.-R., Chou, S.-L., Wang, J.-Z., and Liu, H.-K., Cobalt phosphide as a new anode material for sodium storage, J. Power Sources, 2015, vol. 294, p. 627.

    Article  CAS  Google Scholar 

  146. Li, Z., Zhang, L., Ge, X., Li, C., Dong, S., Wang, C., and Yin, L., Core–shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries, Nano Energy, 2017, vol. 32, p. 494.

    Article  CAS  Google Scholar 

  147. Zhang, L., Wu, H.B., Madhavi, S., Hng, H.H., and Lou, X.W., Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties, J. Am. Chem. Soc., 2012, vol. 134, p. 17388.

    Article  CAS  PubMed  Google Scholar 

  148. Ge, X., Li, Z., and Yin, L., Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery, Nano Energy, 2017, vol. 32, p. 117.

    Article  CAS  Google Scholar 

  149. Li, W., Ke, L., Wei, Y., Guo, S., Gan, L., Li, H., Zhai, T., and Zhou, H., Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage, J. Mater. Chem. A, 2017, vol. 5, p. 4413.

    Article  CAS  Google Scholar 

  150. Gavrilin, I.M., Smolyaninov, V.A., Dronov, A.A., Gavrilov, S.A., Trifonov, A.Yu., Kulova, T.L., Kuz’mina, A.A., and Skundin, A.M., Electrochemical insertion of sodium into nanostructured materials based on germanium, Mendeleev Commun., 2018, vol. 28, p. 659.

    Article  CAS  Google Scholar 

  151. Nam, K.-H., Jeon, K.-J., and Park, C.-M., Layered germanium phosphide-based anodes for high-performance lithium- and sodium-ion batteries, Energy Storage Mater., 2019, vol. 17, p. 78.

    Article  Google Scholar 

  152. Lu, Y., Zhou, P., Lei, K., Zhao, Q., Tao, Z., and Chen, J., Selenium phosphide (Se4P4) as a new and promising anode material for sodium-ion batteries, Adv. Energy Mater., 2017, vol. 7, Article no. 1601973.

    Article  CAS  Google Scholar 

  153. Cao, Y., Majeed, M.K., Li, Y., Ma, G., Feng, Z., Ma, X., and Ma, W., P4Se3 as a new anode material for sodium-ion batteries, J. Alloys Compd., 2019, vol. 775, p. 1286.

    Article  CAS  Google Scholar 

  154. Pan, Q., Chen, H., Wu, Z., Wang, Y., Zhong, B., Xia, L., Wang, H.-Y., Cui, G., Guo, X., and Sun, X., Nanowire of WP as a high-performance anode material for sodium-ion batteries, Chem. Eur. J., 2019, vol. 25, p. 971.

    CAS  PubMed  Google Scholar 

  155. Duveau, D., Sananes, I.S., Fullenwarth, J., Cuninc, F., and Monconduit, L., Pioneer study of SiP2 as negative electrode for Li- and Na-ion batteries, J. Mater. Chem. A, 2016, vol. 4, p. 3228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Skundin.

Ethics declarations

FUNDING

This study was funded by the Russian Foundation for Basic Research, project no. 19-03-00236.

CONFLICT OF INTERESTS

The authors declare the absence of any conflict of interests.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulova, T.L., Skundin, A.M. The Use of Phosphorus in Sodium-Ion Batteries (A Review). Russ J Electrochem 56, 1–17 (2020). https://doi.org/10.1134/S1023193520010061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520010061

Keyword:

Navigation