Skip to main content
Log in

Electrochemical Local Maskless Micro/Nanoscale Deposition, Dissolution, and Oxidation of Metals and Semiconductors (A Review)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The review is devoted to the modern methods of local maskless electrochemical machining of metals and semiconductors with the aim of formation of individual islands or cavities, their groups, and patterns according to a given program on their surface, or 3D micro/nanostructures, for example, metal threads and various thread structures. For this purpose, various methods of localizing the electrochemical deposition, dissolution, or oxidation are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Electrochemical Microsystem Technologies, Schultze, J.W., Osaka, T., and Datta, M., Eds., London: Taylor & Francis, 2002.

    Google Scholar 

  2. Datta, M. and Landolt, D., Fundamental aspects and applications of electrochemical microfabrication, Electrochim. Acta, 2000, vol. 45, p. 2535.

    Article  CAS  Google Scholar 

  3. Bhattacharyya, B., Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology, Oxford: William Andrew, 2015.

    Google Scholar 

  4. Braun, T.M. and Schwartz, D.T., The emerging role of electrodeposition in additive manufacturing, Electrochem. Soc. Interface, 2016, vol. 25, no. 1, p. 69.

    Article  CAS  Google Scholar 

  5. Liu, Y., Zeng, Y., and Yu, H., Development of microelectrodes for electrochemical machining, Int. J. Manuf. Technol., 2011, vol. 55, p. 195.

    Article  Google Scholar 

  6. Kim, B.H., Na, C.W., Lee, Y.S., Choi, D.K., and Chu, C.N., Micro electrochemical machining of 3D micro structure using dilute sulfuric acid, CIRP Annals – Manufacturing Technology, 2005, vol. 54, p. 191.

    Book  Google Scholar 

  7. Wang, Y., Zeng, Y., Qu, N., and Zhu, D., Electrochemical micromachining of small tapered microstructures with sub-micro spherical tool, Int. J. Adv. Manuf. Technol., 2016, vol. 84, p. 851.

    Google Scholar 

  8. Koch, M., Kirchner, V., and Schuter, R., Electrochemical micromachining with ultrashort voltage pulses, Electrochim. Acta, 2003, vol. 48, p. 3213.

    Article  CAS  Google Scholar 

  9. Sjöström, T. and Su, B., Micropatterning of titanium surfaces using electrochemical micromachining with an ethylene glycol electrolyte, Mater. Lett., 2011, vol. 65, p. 3489.

    Article  CAS  Google Scholar 

  10. Maurer, J.J., Mallett, J.J., Hudson, J.L., Fick, S.E., Moffat, T.P., and Shaw, G.A., Electrochemical micromachining of Hastelloy B-2 with ultrashort voltage pulses, Electrochim. Acta, 2010, vol. 55, p. 952.

    Article  CAS  Google Scholar 

  11. Park, B.J., Kim, B.H., and Chu, C.N., The effects of tool electrode size on characteristics of micro electrochemical machining, Annals of the CIRP, 2006, vol. 55, p. 197.

    Article  Google Scholar 

  12. Koza, J.A., Sueptittz, R.S., Uhlemann, M., Schutz, L., and Gebert, A., Electrochemical micromachining of a Zr-based bulk metallic glass using a micro-tool electrode technique, Intermetallics, 2011, vol. 19, p. 437.

    Article  CAS  Google Scholar 

  13. Li, Y., Ma, X., Liu, G., Hu, M., and Yi, F., Research on micro ECM using micro array electrode, Proc. 16th Int. Symp. on Electromachining, Shanghai, China, 2010, p. 335.

  14. Sedykin, F.V., Razmernaya elektrokhimicheskaya obrabotka detalei mashin (Electrochemical Machining of Machine Parts), Moscow: Mashinostroenie, 1976.

  15. Rumyantsev, E. and Davydov, A., Electrochemical Machining of Metals, Moscow: Mir, 1989.

  16. Davydov, A.D., Volgin, V.M., and Lubimov, V.V., Electrochemical machining of metals: fundamentals of electrochemical shaping, Russian J. Electrochem., 2004, vol. 40, p. 1230.

    Article  CAS  Google Scholar 

  17. Wang, Z., Zhu, Y., Fan, Z., and Yun, N., Mechanism and process study of ultrasonical vibration combined synchronizing pulse electrochemical micro-machining, Proc. 16th Int. Symp. on Electromachining, Shanghai, China, 2010, p. 351.

  18. Zhitnikov, V.P. and Zaitsev, A.N., Impul’snaya elektrokhimicheskaya razmernaya obrabotka (Pulsed Electrochemical Machining), Moscow: Mashinostroenie, 2008.

  19. Schramm, A., Gesetzmassigkeiten des elektrochemischen abtrags beim kombinierten elektrochemischen/ultraschall-senken, Fertigungstech.Betr., 1985, vol. 35, p. 367.

    Google Scholar 

  20. Allongue, P., Jiang, P., Kirchner, V., Trimmer, A.L., and Schuster, R., Electrochemical micromachining of p-type silicon, J. Phys. Chem. B., 2004, vol. 108, p. 14434.

    Article  CAS  Google Scholar 

  21. Trimmer, A.L., Maurer, J.J., Schuster, R., Zangari, G., and Hudson, J.L., All-electrochemical synthesis of submicrometer Cu structures on electrochemically machined p-Si substrates, Chem. Mater., 2005, vol. 17, p. 6755.

    Article  CAS  Google Scholar 

  22. Schuster, R., Kirchner, V., Allongue, P., and Ertl, G., Electrochemical micromachining, Science, 2000, vol. 289, p. 98.

    Article  CAS  PubMed  Google Scholar 

  23. Koch, M., Kirchner, V., and Schuster, R., Electrochemical micromachining with ultrashort voltage pulses, Electrochim. Acta, 2003, vol. 48, p. 3213.

    Article  CAS  Google Scholar 

  24. Kirchner, V., Xia, X., and Schuster, R., Electrochemical nanostructuring with ultrashort voltage pulses, Acc. Chem. Res., 2001, vol. 34, p. 371.

    Article  CAS  PubMed  Google Scholar 

  25. Park, B.J., Kim, B.H., and Chu, C.N., The effects of tool electrode size on characteristics of micro electrochemical machining, Annals of the CIRP, 2006, vol. 55, p. 197.

    Article  Google Scholar 

  26. Madden, J.D., Lafontaine, S.R., and Hunter, I.W., Fabrication by electrodeposition: building 3D structures and polymer actuators, Proc. Sixth Int. Symp. “Micro Machine and Human Science”, Nagoya, Japan, 1995, p. 77.

  27. Madden, J.D. and Hunter, I.W., Three-dimensional microfabrication by localized electrochemical deposition, J. Microelectromech. Syst., 1996, vol. 5, no. 1, p. 24.

    Article  CAS  Google Scholar 

  28. Said, R.A., Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modeling, Nanotechnology, 2003, vol. 14, no. 5, p. 523.

    Article  CAS  Google Scholar 

  29. Lin, J.C., Jang, S.B., Lee, D.L., Chen, C.C., Yeh, P.C., Chang, T.K., and Yang, J.H., Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating, J. Micromech. Microeng., 2005, vol. 15, no. 12, p. 2405.

    Article  CAS  Google Scholar 

  30. Lin, C.S., Lee, C.Y., Yang, J.H., and Huang, Y.S., Improved copper microcolumn fabricated by localized electrochemical deposition, Electrochem. Solid-State Lett., 2005, vol. 8, p. C125.

    Article  CAS  Google Scholar 

  31. Seol, S.-K., Pyun, A.-R., Hwu, Y., Margaritondo, G., and Je, J.-H., Localized electrochemical deposition of copper monitored using real-time x-ray microradiography, Adv. Funct. Mater., 2005, vol. 15, p. 934.

    Article  CAS  Google Scholar 

  32. Yang, J.H., Lin, J.C., Chang, T.K., You, X.B., and Jiang, S.B., Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process, J. Micromech. Microeng., 2009, vol. 19, p. 025015.

    Article  CAS  Google Scholar 

  33. Yang, J.H., Lin, J.C., Chang, T.K., Lai, G.Y., and Jiang, S.B., Assessing the degree of localization in localized electrochemical deposition of copper, J. Micromech. Microeng., 2008, vol. 18, p. 055023.

    Article  CAS  Google Scholar 

  34. Lin, J.C., Yang, J.H., Chang, T.K., and Jiang, S.B., On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating, Electrochim. Acta, 2009, vol. 54, no. 24, p. 5703.

    Article  CAS  Google Scholar 

  35. Lin, J.C., Chang, T.K., Yang, J.H., Chen, Y.S., and Chuang, C.L., Localized electrochemical deposition of micrometer copper columns by pulse plating, Electrochim. Acta, 2010, vol. 55, p. 1888.

    Article  CAS  Google Scholar 

  36. Said, R.A., Localized electro-deposition (LED): the march toward process development, Nanotechnology, 2004, vol. 15, p. S649.

    Article  Google Scholar 

  37. Lin, J.C., Chang, T.K., Yang, J.H., Jeng, J.H., Lee, D.L., and Jiang, S.B., Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement, J. Micromech. Microeng., 2009, vol. 19, p. 015030(1–10).

  38. Debnath, S., Laskar, H.R., and Bhattacharyya, B., Investigation into generation of micro features by localised electrochemical deposition, J. Inst. Eng. India Ser. C, 2019, vol. 100, no. 1, p. 113.

    Article  Google Scholar 

  39. Wang, F., Xiao, H., and He, H., Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns, PMC,Scientific Reports, 2016, no. 6, p. 26270. https://doi.org/10.1038/srep26270

  40. Lee, C.-Y., Lin, C.-S., and Lin, B.-R., Localized electrochemical deposition process improvement by using different anodes and deposition directions, J. Micromech. Microeng., 2008, vol. 18, p. 105008.

    Article  CAS  Google Scholar 

  41. El-Giar, E.M., U, C., and Thomson, D.J., Localized electrochemical plating of interconnectors for microelectronics, Proc. 1997 Conf. on Communications, Power and Computing WESCANEX’97, Winnipeg, MB, 1997, p. 327.

  42. Jansson, A., Thornell, G., and Johansson, S., High resolution 3D microstructures made by localized electrodeposition of nickel, J. Electrochem. Soc., 2000, vol. 147, no. 5, p. 1810.

    Article  CAS  Google Scholar 

  43. Hwang, Y.-R., Lin, J.-C., and Chen, T.-C., The analysis of the deposition rate for continuous micro-anode guided electroplating process, Int. J. Electrochem. Sci., 2012, vol. 7, p. 1359.

    CAS  Google Scholar 

  44. Pellicer, E., Pané, S., Panagiotopoulou, V., Fusco, S., Sivaraman, K.M., Suriñach, S., Baró, M.D., Nelson, B.J., and Sort, J., Localized electrochemical deposition of porous Cu–Ni microcolumns: Insights into the growth mechanisms and the mechanical performance, Int. J. Electrochem. Sci., 2012, vol. 7, p. 4014.

    CAS  Google Scholar 

  45. Chang, T.K., Lin, J.C., Yang, J.H., Yeh, P.C., Lee, D.L., and Jiang, S.B., Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition, J. Micromech. Microeng., 2007, vol. 17, p. 2336.

    Article  CAS  Google Scholar 

  46. Yeo, S.H. and Choo, J.H., Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition, J. Micromech. Microeng., 2001, vol. 11, p. 435.

    Article  CAS  Google Scholar 

  47. Wang, F., Bian, H., Wang, F., Sun, J., and Zhu, W., Fabrication of micro copper walls by localized electrochemical deposition through the layer by layer movement of a micro anode, J. Electrochem. Soc., 2017, vol. 164, p. D758.

    Article  CAS  Google Scholar 

  48. Wang, F., Sun, J., Liu, D., Wang, Y., and Zhu, W., Effect of voltage and gap on micro-nickel-column growth patterns in localized electrochemical deposition, J. Electrochem. Soc., 2017, vol. 164, p. D297.

    Article  CAS  Google Scholar 

  49. Yeo, S.H., Choo, J.H., and Sim, K.H.A., On the effects of ultrasonic vibrations on localized electrochemical deposition, J. Micromech. Microeng., 2002, vol. 12, p. 271.

    Article  CAS  Google Scholar 

  50. Said, R.A., Alshwawreh, N., and Haik, Y., Fabrication of array microstructures using serial and parallel localized electrodeposition, Int. J. Nanosci., 2009, vol. 8, no. 03, p. 323.

    Article  CAS  Google Scholar 

  51. Ciou, Y.J., Hwang, Y.R., and Lin, J.C., Theoretical modeling and fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing, Key Eng. Mat., 2015, vol. 656, p. 604.

    Article  Google Scholar 

  52. Brant, A.M., Sundaram, M.M., and Kamaraj, A.B., Finite element simulation of localized electrochemical deposition for maskless electrochemical additive manufacturing, J. Manuf. Sci. E.-T. ASME, 2015, vol. 137, no. 1, p. 011018.

  53. Xiao, H., Zeng, P., Ren, X., and Wang, F., Three-dimensional microfabrication of copper column by localized electrochemical deposition, Electronic Packaging Technology (ICEPT), 17th Int. Conference IEEE, 2016, p. 69.

  54. Kamaraj, A., Lewis, S., and Sundaram, M., Numerical study of localized electrochemical deposition for micro electrochemical additive manufacturing, Procedia CIRP, 2016, vol. 42, p. 788.

    Article  Google Scholar 

  55. Volgin, V.M., Kabanova, T.B., and Davydov, A.D., Modeling of local maskless electrochemical deposition of metal microcolumns, Chem. Eng. Sci., 2018, vol. 183, p. 123.

    Article  CAS  Google Scholar 

  56. Ullmann, R., Will, T., and Kolb, D.M., Nanoscale decoration of Au(111) electrodes with Cu clusters by an STM, Chem. Phys. Lett., 1993, vol. 209, p. 238.

    Article  CAS  Google Scholar 

  57. Ullmann, R., Will, T., and Kolb, D.M., Nanostructuring of electrode surfaces by tip-induced metal deposition, Ber. Bunsenges. Phys. Chem., 1995, vol. 99, p. 1414.

    Article  CAS  Google Scholar 

  58. Engelmann, G.E., Ziegler, J.C., and Kolb, D.M., Electrochemical fabrication of large arrays of metal nanoclusters, Surf. Sci. Lett., 1998, vol. 401, p. L420.

    Article  CAS  Google Scholar 

  59. Kolb, D.M., Ullmann, R., and Will, T., Nanofabrication of small copper clusters on gold (111) electrodes by a scanning tunneling microscope, Science, 1997, vol. 275, p. 1097.

    Article  CAS  PubMed  Google Scholar 

  60. Kolb, D.M., Ullmann, R., and Ziegler, J.C., Electrochemical nanostructuring, Electrochim. Acta, 1998, vol. 43, p. 2751.

    Article  CAS  Google Scholar 

  61. Engelmann, G.E., Ziegler, J.C., and Kolb, D.M., Nanofabrication of small palladium clusters on Au(111) electrodes with a scanning tunneling microscope, J. Electrochem. Soc., 1998, vol. 145, p. L33.

    Article  CAS  Google Scholar 

  62. Hofmann, D., Schindler, W., and Kirschner J., Electrodeposition of nanoscale magnetic structures, Appl. Phys. Lett., 1998, vol. 73, p. 3279.

    Article  CAS  Google Scholar 

  63. Schindler, W., Hofmann, D., and Kirschner, J., Nanoscale electrodeposition: A new route to magnetic nanostructures? J. Appl. Phys., 2000, vol. 87, p. 7007.

    Article  CAS  Google Scholar 

  64. Schindler, W., Hofmann, D., and Kirschner J., Localized electrodeposition using a scanning tunneling microscope tip as a nanoelectrode, J. Electrochem. Soc., 2001, vol. 148, p. C124.

    Article  CAS  Google Scholar 

  65. Spiegel, A., Staemmler, L., Döbeli, M., and Schmuki, P., Selective electrodeposition of Cu nanostructures on focused ion beam sensitized p-Si, J. Electrochem. Soc., 2002, vol. 149, p. C432.

    Article  CAS  Google Scholar 

  66. Homma, T., Kubo, N., and Osaka, T., Maskless and electroless fabrication of patterned metal nanostructures on silicon wafers by controlling local surface activities, Electrochim. Acta, 2003, vol. 48, p. 3115.

    Article  CAS  Google Scholar 

  67. Choi, J., Chen, Z., and Singh, R.K., A method for selective deposition of copper nanoparticles on silicon surfaces, J. Electrochem. Soc., 2003, vol. 150, p. C563.

    Article  CAS  Google Scholar 

  68. Schmuki, P. and Erickson, L.E., Selective high-resolution electrodeposition on semiconductor defect patterns, Phys. Rev. Lett., 2000, vol. 85, p. 2985.

    Article  CAS  PubMed  Google Scholar 

  69. Santinacci, L., Djenizian, T., and Schmuki, P., Atomic force microscopy-induced nanopatterning of Si(100) surfaces, J. Electrochem. Soc., 2001, vol. 148, p. C640.

    Article  CAS  Google Scholar 

  70. Pötzschke, R.T., Staikov, G., Lorenz, W.J., and Wiesbeck, W., Electrochemical nanostructuring of n‑Si(111) single-crystal faces, J. Electrochem. Soc., 1999, vol. 146, p. 141.

    Article  Google Scholar 

  71. Ammann, E. and Mandler, D., Local deposition of gold on silicon by the scanning electrochemical microscope, J. Electrochem. Soc., 2001, vol. 148, p. 533.

    Article  Google Scholar 

  72. Oskam, G., Long, J.G., Natarajan, A., and Searson, P.C., Electrochemical deposition of metals onto silicon, J. Phys. D: Appl. Phys., 1998, vol. 31, p. 1927.

    Article  CAS  Google Scholar 

  73. Avouris, P., Hertel, T., and Martel, R., Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication, Appl. Phys. Lett., 1997, vol. 71, p. 285.

    Article  CAS  Google Scholar 

  74. Avouris, P., Martel, R., Hertel, T., and Sandstrom, R.L., AFM-tip-induced and current-induced local oxidation of silicon and metals, Appl. Phys. A: Mater. Sci. Process., 1998, vol. 66, p. S659.

    Article  CAS  Google Scholar 

  75. Held, R., Heinzel, T., Studerus, P., and Ensslin, K., Nanolithography by local anodic oxidation of metal films using an atomic force microscope, Physica E: Low-Dimensional Systems and Nanostuctures, 1998, vol. 2, p. 748.

    Article  CAS  Google Scholar 

  76. Vaccaro, P.O., Sakata, S., Yamaoka, S., Umezu, I., and Sugimura, A., Nano-oxidation of vanadium thin films using atomic force microscopy, J. Mater. Sci. Lett., 1998, vol. 17, p. 1941.

    Article  CAS  Google Scholar 

  77. Okur, S., Büyükköse, S., and Tari, S., Scanning probe oxidation lithography on Ta thin films, J. Nanosci. Nanotechnol., 2008, vol. 8, p. 5640.

    CAS  PubMed  Google Scholar 

  78. Matsumoto, K., Takahashi, S., Ishii, M., Hoshi, M., Kurokawa, A., Ichimura, S., and Ando, A., Application of STM nanometer-size oxidation process to planar-type MIM diode, Jpn. J. Appl. Phys., 1995, vol. 34, p. 1387.

    Article  CAS  Google Scholar 

  79. Snow, E.S. and Campbell, P.M., Fabrication of Si nanostructures with an atomic force microscope, Appl. Phys. Lett., 1994, vol. 64, p. 1932.

    Article  CAS  Google Scholar 

  80. Sugimura, H., Uchida, T., Kitamura, N., and Masuhara, H., Tip-induced anodization of titanium surfaces by scanning tunneling microscopy: a humidity effect on nanolithography, Appl. Phys. Lett., 1993, vol. 63, p. 1288.

    Article  CAS  Google Scholar 

  81. Snow, E.S., Park, D., and Campbell, P.M., Single-atom point contact devices fabricated with an atomic force microscope, Appl. Phys. Lett., 1996, vol. 69, p. 269.

    Article  CAS  Google Scholar 

  82. Campbell, P.M., Snow, E.S., and McMarr, P.J., Fabrication of nanometer-scale side-gated silicon field effect transistors with an atomic force microscope, Appl. Phys. Lett., 1995, vol. 66, p. 1388.

    Article  CAS  Google Scholar 

  83. Day, H.C. and Allee, D.R., Selective area oxidation of silicon with a scanning force microscope, Appl. Phys. Lett., 1993, vol. 62, p. 2691.

    Article  CAS  Google Scholar 

  84. Vullers, R.J.M., Ahlskog, M., and Van Haesendonck, C., Titanium nanostructures made by local oxidation with the atomic force microscope, Appl. Surface Sci., 1999, vol. 144, p. 584.

    Article  Google Scholar 

  85. Sugimura, H., Uchida, T., Kitamura, N., and Masuhara, H., Scanning tunneling microscope tip-induced anodization for nanofabrication of titanium, J. Phys. Chem., 1994, vol. 98, p. 4352.

    Article  CAS  Google Scholar 

  86. Wang, D., Tsau, L., Wang, K.L., and Chow, P., Nanofabrication of thin chromium film deposited on Si(100) surfaces by tip induced anodization in atomic force microscopy, Appl. Phys. Lett., 1995, vol. 67, p. 1295.

    Article  CAS  Google Scholar 

  87. Seol, S.K., Kim, D., Lee, S., Kim, J.H., Chang, W.S., and Kim, J.T., Electrodeposition-based 3D printing of metallic microarchitectures with controlled internal structures, Small, 2015, vol. 11, p. 3896.

    Article  CAS  PubMed  Google Scholar 

  88. Morsali, S., Daryadel, S., Zhou, Z., Behroozfar, A., Baniasadi, M., Qian, D., and Minary-Jolandan, M., Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of environmental humidity, J. Appl. Phys., 2017, vol. 121, p. 024903.

    Article  CAS  Google Scholar 

  89. Suryavanshi, A.P. and Yu, M.-F., Electrochemical fountain pen nanofabrication of vertically grown platinum nanowires, Nanotechnology, 2007, vol. 18, p. 105305.

    Article  CAS  Google Scholar 

  90. Morsali, S., Daryadel, S., Zhou, Z., Behroozfar, A., Baniasadi M., Moreno, S., Qian, D., and Minary-Jolandan, M., Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of nozzle speed and diameter, J. Appl. Phys., 2017, vol. 121, p. 214305.

    Article  CAS  Google Scholar 

  91. Suryavanshi, A.P. and Yu, M.-F., Probe-based electrochemical fabrication of freestanding Cu nanowire array, Appl. Phys. Lett., 2006, vol. 88, p. 083103.

    Article  CAS  Google Scholar 

  92. Hu, J. and Yu, M.-F., Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds, Science, 2010, vol. 329, p. 313.

    Article  CAS  PubMed  Google Scholar 

  93. Chen, X., Liu, X., Childs, P., Brandon, N., and Wu, B., A low cost desktop electrochemical metal 3D printer, Adv. Mater. Technol., 2017, vol. 2, p. 1700148.

    Article  CAS  Google Scholar 

  94. Momotenko, D., Page, A., Adobes-Vidal, M., and Unwin, P.R., Write-read 3D patterning with a dual-channel nanopipette, ACS Nano, 2016, vol. 10, p. 8871.

    Article  CAS  PubMed  Google Scholar 

  95. Müller, A.D., Müller, F., and Hietschold, M., Electrochemical pattern formation in a scanning near-field optical microscope, Appl. Phys. A: Mater. Sci. Process., 1998, vol. 66, p. S453.

    Article  Google Scholar 

  96. Ito, S. and Iwata, F., Nanometer-scale deposition of metal plating using a nanopipette probe in liquid condition, Jpn. J. Appl. Phys., 2011, vol. 50, p. 08LB15.

    Article  Google Scholar 

  97. Leïchlé, T. and Nicu, L., Copper electrodeposition localized in picoliter droplets using microcantilever arrays, Appl. Phys. Lett., 2006, vol. 88, p. 254108.

    Article  CAS  Google Scholar 

  98. Pirani, M. and Schöter, K., Elektrolytische formgebung von harten metallischen gegenständen, Z. Metallkunde, 1924, vol. 16, p. 132.

    CAS  Google Scholar 

  99. Lohrengel, M.M., Klüppel, I., Rosenkranz, C., Bettermann, H., and Schultze, J.W., Microscopic investigations of electrochemical machining of Fe in NaNO3, Electrochim. Acta, 2003, vol. 48, p. 3203.

    Article  CAS  Google Scholar 

  100. Cowper-Coles, S., An electrolytic drilling and slotting process, The Electro-Chemist and Metallurgist, 1903, vol. 3, part 4, p. 203.

    Google Scholar 

  101. Cowper-Coles, S., Electrolytic drilling and slotting process, Electrochemical Industry, 1904, vol. 2, no. 1, p. 28.

    Google Scholar 

  102. Nelson, J.B., Wisecarver, Z., and Schwartz, D.T., Electrochemical printing: mass transfer effects, J. Micromech. Microeng., 2007, vol. 17, p. 1192.

    Article  CAS  Google Scholar 

  103. Cole, R.R. and Hopenfeld, Y., An investigation of electrolytic jet polishing at high current densities, J. Eng. Ind., Trans. ASME, 1963, vol. 85, no. 4, p. 395.

    Article  CAS  Google Scholar 

  104. Speidel, A., Mitchell-Smith, J., Bisterov, I., and Clare, A.T., The dependence of surface finish on material precondition in electrochemical jet machining, Proc. CIRP, 2018, vol. 68, p. 477.

  105. Li, Q. and Walker, J.D.A., Prediction of electrodeposition rates from an impinging jet, AIChE J., 1996, vol. 42, p. 391.

    Article  CAS  Google Scholar 

  106. Mitchell-Smith, J., Speidel, A., and Clare, A.T., Advancing electrochemical jet methods through manipulation of the angle of address, J. Mater. Process. Technol., 2018, vol. 255, p. 364.

    Article  CAS  Google Scholar 

  107. Natsu, W., Ikeda, T., and Kunieda, M., Generating complicated surface with electrolyte jet machining, Precis. Eng., 2007, vol. 31, p. 33.

    Article  Google Scholar 

  108. Natsu, W., Ooshiro, S., and Kunieda, M., Research on generation of three-dimensional surface with micro-electrolyte jet machining, CIRP J. Manufact. Sci. Technol., 2008, vol. 1, p. 27.

    Article  Google Scholar 

  109. Kuhn, D., Martin, A., Eckart, C., Sieber, M., Morgenstern, R., Hackert-Oschätzchen, M., Lampke, T., and Schubert, A., Localised anodic oxidation of aluminium material using a continuous electrolyte jet, IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 181, p. 012042. https://doi.org/10.1088/1757-899X/181/1/012042

  110. Aerts, T., De Graeve, I., Nelissen, G., Deconinck, J., Kubacki, S., Dick, E., and Terryn, H. Experimental study and modelling of aluminium in a wall-jet electrode set-up in laminar and turbulent regime, Corros. Sci., 2009, vol. 51, p. 1482.

    Article  CAS  Google Scholar 

  111. Meltzer, S. and Mandler, D., Microwriting of gold patterns with the scanning electrochemical microscope, J. Electrochem. Soc., 1995, vol. 142, p. L82.

    Article  CAS  Google Scholar 

  112. De Abril, O., Mandler, D., and Unwin, P.R., Local cobalt electrodeposition using the scanning electrochemical microscope, Electrochem. Solid-State Lett., 2004, vol. 7, p. C71.

    Article  CAS  Google Scholar 

  113. Borgwarth, K. and Heinze, J., Increasing the resolution of the scanning electrochemical microscope using a chemical lens: Application to silver deposition, J. Electrochem. Soc., 1999, vol. 146, p. 3285.

    Article  CAS  Google Scholar 

  114. Borgwarth, K., Ricken, C., Ebling, D.G., and Heinze, J., Surface characterisation and modification by the scanning electrochemical microscope (SECM), Ber. Bunsenges. Phys. Chem., 1995, vol. 99, p. 1421.

    Article  CAS  Google Scholar 

  115. Mandler, D. and Bard, A., High resolution etching of semiconductors by the feedback mode of the scanning electrochemical microscope, J. Electrochem. Soc., 1990, vol. 137, p. 2468.

    Article  CAS  Google Scholar 

  116. Sheffer, M. and Mandler, D., Scanning electrochemical imprinting microscopy: A tool for surface patterning, J. Electrochem. Soc., 2008, vol. 155, p. D203.

    Article  CAS  Google Scholar 

  117. Mandler, D. and Bard, A., Scanning electrochemical microscopy: The application of the feedback mode for high resolution copper etching, J. Electrochem. Soc., 1989, vol. 136, p. 3143.

    Article  CAS  Google Scholar 

  118. Sheffer, M. and Mandler, D., Why is copper locally etched by scanning electrochemical microscopy? J. Electroanal. Chem., 2008, vol. 622, p. 115.

    Article  CAS  Google Scholar 

  119. Macpherson, J.V., Slevin, C.J., and Unwin, P.R., Probing the oxidative etching kinetics of metals with the feedback mode of the scanning electrochemical microscope, J. Chem. Soc., Faraday Trans., 1996, vol. 92, p. 3799.

    Article  CAS  Google Scholar 

  120. Cornut, R., Nunige, S., Lefrou, C., and Kanoufi, F., Local etching of copper films by the scanning electrochemical microscope in the feedback mode: A theoretical and experimental investigation, Electrochim. Acta, 2011, vol. 56, p. 10701.

    Article  CAS  Google Scholar 

  121. Tian, Z., Fen, Z., Tian, Z., Zhuo, X., Mu, J., Li, C., Lin, H., Ren, B., Xie, Z., and Hu, W., Confined etchant layer technique for two-dimensional lithography at high resolution using electrochemical scanning tunneling microscopy, Faraday Discuss., 1992, vol. 94, p. 37.

    Article  CAS  Google Scholar 

  122. Jiang, L.M., Li, W., Attia, A., Cheng, Z.Y., Tang, J., Tian, Z.Q., and Tian, Z.W., A potential method for electrochemical micromachining of titanium alloy Ti6Al14V, J. Appl. Electrochem., 2008, vol. 38, p. 785.

    Article  CAS  Google Scholar 

  123. Jiang, L.M., Liu, Z.F., Tang, J., Zhang, L., Shi, K., Tian, Z.Q., Liu, P.K., Sun, L.N., and Tian, Z.W., Three-dimensional micro-fabrication on copper and nickel, J. Electroanal. Chem., 2005, vol. 581, p. 153.

    Article  CAS  Google Scholar 

  124. Ma, X.-Z., Zhang, L., Cao, G.-H., Lin, Y., and Tang, J., Electrochemical micromachining of nitinol by confined-etchant-layer technique, Electrochim. Acta, 2007, vol. 52, p. 4191.

    Article  CAS  Google Scholar 

  125. Zu, Y., Xie, L., Mao, B., and Tian, Z., Studies on silicon etching using the confined etchant layer technique, Electrochim. Acta, 1998, vol. 43, p. 1683.

    Article  CAS  Google Scholar 

  126. Sun, J.J., Huang, H.G., Tian, Z.Q., Xie, L., Luo, J., Ye, X.Y., Zhou, Z.Y., Xia, S.H., and Tian, Z.W., Three-dimensional micromachining for microsystems by confined etchant layer technique, Electrochim. Acta, 2001, vol. 47, p. 95.

    Article  CAS  Google Scholar 

  127. Yuan, Y., Han, L., Zhang, J., Jia, L., Zhao, X., Cao, Y., Hu, Z., Yan, Y., Dong, S., Tian, Z.-Q., Tian, Z.-W., and Zhan, D., Electrochemical mechanical micromachining based on confined etchant layer technique, Faraday Discuss., 2013, vol. 164, p. 189.

    Article  CAS  PubMed  Google Scholar 

  128. Hirt, L., Ihle, S., Pan, Z., Dorwling-Carter, L., Reiser, A., Wheeler, J.M., Prolenak, R., Vörös, J., and Zambelli, T., Template-free 3D microprinting of metals using a force-controlled nanopipette for layer-by-layer electrodeposition, Adv. Mater., 2016, vol. 28, p. 2311.

    Article  CAS  PubMed  Google Scholar 

  129. Hirt, L., Grüter, R.R., Berthelot, T., Cornut, R., Vörös, J., and Zambelli, T., Local surface modification via confined electrochemical deposition with FluidFM, RSC Adv., 2015, vol. 5, p. 84517.

    Article  CAS  Google Scholar 

  130. Tsao, J.Y. and Ehrlich, D.J., Laser-controlled chemical etching of aluminum, Appl. Phys. Lett., 1983, vol. 43, p. 146.

    Article  CAS  Google Scholar 

  131. Nowak, R. and Metev, S., Thermochemical laser etching of stainless steel and titanium in liquids, Phys., 1996, vol. A 63, p. 133.

  132. Hsiao, M.C. and Wan, C.C., The investigations of laser-enhanced copper plating on a good heat conducting copper foil, J. Electrochem. Soc., 1991, vol. 138, p. 2273.

    Article  CAS  Google Scholar 

  133. Puippe, J.C., Acosta, R.E., and von Gutfeld, R.J., Investigation of laser-enhanced electroplating mechanisms, J. Electrochem. Soc., 1981, vol. 128, p. 2539.

    Article  CAS  Google Scholar 

  134. Von Gutfeld, R.J., Tynan, E.E., Melcher, R.L., and Blum, S.E., Laser enhanced electroplating and maskless pattern generation, Appl. Phys. Lett., 1979, vol. 35, p. 651.

    Article  CAS  Google Scholar 

  135. Bindra, P., Arbach, G.V., and Stimming, U., On the mechanism of laser enhanced plating of copper, J. Electrochem. Soc., 1987, vol. 134, p. 2893.

    Article  CAS  Google Scholar 

  136. Al-Sufi, A.K., Eichler, H.J., and Salk, J., Laser induced copper plating, J. Appl. Phys., 1983, vol. 54, p. 3629.

    Article  CAS  Google Scholar 

  137. Eremenko, A.A., Kozlova E.K., Portnyagin A.I., Romanchenko, A.N., and Filippov, A.E., Influence of optical radiation on electroless nickel plating, Soviet J.Quantum Electronics, 1984, vol. 14, no. 8, p. 1129.

    Google Scholar 

  138. Von Gutfeld, R.J. and Hodgson, R.T., Laser enhanced etching in KOH, Appl. Phys. Lett., 1982, vol. 40, p. 352.

    Article  CAS  Google Scholar 

  139. Seryanov, Yu.V., Rabkin, V.B., and Surmenko, L.A., Laser-enhanced copper etching in nitric acid solutions, Soviet Electrochem., 1988, vol. 24, p. 842.

    Google Scholar 

  140. Dikusar, A.I., Engelgardt, G.P., and Molin, A.N., Termokineticheskie yavleniya pri vysokoskorostnykh elektrodnykh protsessakh (Thermokinetic Phenomena at High-Rate Electrode Processes), Kishinev: Shtiintsa, 1989, p. 112.

  141. Yung, E.K., Hussey, B.W., Gupta, A., and Romankiw, L.T., Laser-assisted etching of manganese-zinc-ferrite, J. Electrochem. Soc., 1989, vol. 136, p. 665.

    Article  CAS  Google Scholar 

  142. Seryanov, Yu.V., Grigor’eva, E.M., Bol’shinskova, T.A., and Fomenko, L.A., Thermal conditions and kinetics of formation of nickel “lines” during laser radiation of NimLnXk films on Al2O3, Fiz. Khim. Obrab. Mater., 1995, no. 1, p. 17.

  143. Zhang, H. and Xu, J., Modeling and experimental investigation of laser drilling with jet electrochemical machining, Chinese J. Aeronautics, 2010, vol. 23, p. 454.

    Article  Google Scholar 

  144. Kuiken, H.K., Mikkers, F.E.P., and Wierenga, P.E., Laser-enhanced electroplating on good heat-conducting bulk materials, J. Electrochem. Soc., 1983, vol. 130, p. 554.

    Article  CAS  Google Scholar 

  145. Hsiao, M.C. and Wan, C.C., The effect of pH on the localized etching process induced by laser irradiation, J. Electrochem. Soc., 1994, vol. 141, p. 943.

    Article  CAS  Google Scholar 

  146. Dzhunushaliev, V.D. and Chokoev, E.S., Specific features of laser treatment of metal in liquid, Fiz. Khim. Obrab. Mater., 1990, no. 4, p. 140.

  147. Davydov, A.D., Laser electrochemical machining of metals, Russian J. Electrochem., 1994, vol. 30, p. 871.

    Google Scholar 

  148. Kozak, J. and Rajurkar, K.P., Laser assisted electrochemical machining, Trans. NAMRI/SME, 2001, vol. 29, p. 421.

    Google Scholar 

  149. Metev, S.M. and Veiko, V.P., Laser-Assisted Microtechnology, Berlin: Springer, 1998.

    Book  Google Scholar 

  150. Von Gutfeld, R.J., Vigliotti, D.R., and Datta, M., Laser chemical etching of metals in sodium nitrate solution, J. Appl. Phys., 1988, vol. 64, p. 5197.

    Article  CAS  Google Scholar 

  151. Efimov, I.O., Krivenko, A.G., and Benderskii, V.A., Laser activation of nickel electrodes, Soviet Electrochemistry, 1988, vol. 24, p. 1092.

    Google Scholar 

  152. Jacobs, J.W.M. and Rikken, J.M.G., Boiling effects and bubble formation at the solid-liquid interface during laser-induced metal deposition, J. Electrochem. Soc., 1987, vol. 134, p. 2690.

    Article  CAS  Google Scholar 

  153. Datta, M., Romankiw, L.T., Vigliotti, D.R., and von Gutfeld R.J., Jet and laser-jet electrochemical micromachining of nickel and steel, J. Electrochem. Soc., 1989, vol. 136, p. 2251.

    Article  CAS  Google Scholar 

  154. Vagramyan, A.T. and Zhamagortsyants, M.A., Elektroosazhdenie metallov i ingibiruyushchaya adsorbtsiya (Electrodeposition of Metals and Inhibiting Adsorption), Moscow: Nauka, 1969, p. 91.

  155. Shor, J.S., Zhang, X.G., and Osgood, R.M., Laser-assisted photoelectrochemical etching of n-type beta-SiC, J. Electrochem. Soc., 1992, vol. 139, p. 1213.

    Article  CAS  Google Scholar 

  156. Lum, R.M., Glass, A.M., Ostermayer, F.W., Kohl, P.A., Ballman, A.A., and Logan, R.A., Holographic photoelectrochemical etching of diffraction gratings in n-InP and n-GaInAsP for distributed feedback lasers, J. Appl. Phys., 1985, vol. 57, p. 39.

    Article  CAS  Google Scholar 

  157. Alferov, Zh.I., Goryachev, D.N., Gurevich, S.A., Mizerov, M.N., Portnoi, E.L., and Ryvkin, B.S., Diffraction lattices on the GaAs surface obtained by the method of interference photoetching, J. Technical Physics, 1976, vol. 46, p. 1505.

    CAS  Google Scholar 

  158. Belyakov, L.V., Goryachev, D.N., Mizerov, M.N., and Portnoi, E.L., Some characteristics of diffraction lattices obtained by photoetching of semiconductor surface, J. Technical Physics, 1974, vol. 44, p. 1331.

    CAS  Google Scholar 

  159. Kautek, W., Sorg, N., and Paatsch, W., Laser-induced electrodeposition of transition metals on silicon, Electrochim. Acta, 1991, vol. 36, p. 1803.

    Article  CAS  Google Scholar 

  160. Nánai, L., Hevesi, I., Bunkin, F.V., Luk’yanchuk, B.S., Brook, M.R., Shafeev, G.A., Jelski, D.A., Wu, Z.C., and George, T.F., Laser-induced metal deposition on semiconductors from liquid electrolytes, Appl. Phys. Lett., 1989, vol. 54, p. 736.

    Article  Google Scholar 

  161. Sasano, J., Schmuki, P., Sakka, T., and Ogata, Y.H., Laser-assisted maskless Cu patterning on porous silicon, Electrochem. Solid-State Lett., 2004, vol. 7, p. G98.

    Article  CAS  Google Scholar 

  162. Von Gutfeld, R.J., Acosta, R.E., and Romankiw, L.T., Laser-enhanced plating and etching: Mechanisms and applications., IBM J. Res. Develop., 1982, vol. 26, p. 136.

    Article  CAS  Google Scholar 

  163. Karlicek, R.F., Donnelly, V.M., and Collins, G.J., Laser-induced metal deposition on InP, J. Appl. Phys., 1982, vol. 53, p. 1084.

    Article  CAS  Google Scholar 

  164. Scheck, C., Liu, Y.-K., Evans, P., and Schad, R., Photoinduced electrochemical deposition of Cu on p-type Si substrates, Phys. Rev., 2004, vol. B69, p. 035334 (1–8).

  165. Thietke, J. and Schultze, J.W., Mikroelektrodenprozesse im fokussiierten Laserstrahl. Elektrochemie und Elektronik. Dechema-Monographien, B. 117. VCH Verlagsgesellschaft, 1989, p. 175.

  166. Gelchinski, M.H., Romankiw, L.T., Vigliotti, D.R., and von Gutfeld, R.J., Electrochemical and metallurgical aspects of laser-enhanced jet plating of gold, J. Electrochem. Soc., 1985, vol. 132, p. 2575.

    Article  CAS  Google Scholar 

  167. Von Gutfeld, R.J., Gelchinski, M.H., Romankiw, L.T., and Vigliotti, D.R., Laser-enhanced jet plating: A method of high-speed maskless patterning, Appl. Phys. Lett., 1983, vol. 43, p. 876.

    Article  CAS  Google Scholar 

  168. Zouari, I., Pierre, C., Lapicque, F., and Calvo, M., Maskless zinc electrodeposition assisted by pulsed laser beam, J. Appl. Electrochem., 1993, vol. 23, p. 863.

    Article  CAS  Google Scholar 

  169. Gusev, V.E., Kozlova, E.K., and Portnyagin, A.I., Role of thermal gradient effects in laser electrochemistry, Soviet J.Quantum Electronics, 1987, vol. 17, no. 2, p. 195.

    Google Scholar 

  170. Zouari, I., Lapique, F., Calvo, M., and Cabrera, M., Zink electrodeposition assisted by pulsed YAG laser beam: Effect of hydrodynamic conditions, J. Electrochem. Soc., 1992, vol. 139, p. 2163.

    Article  CAS  Google Scholar 

  171. Datta, M., Romankiw, L.T., Vigliotti, D.R., and von Gutfeld, R.J., Laser etching of metals in neutral salt solutions, Appl. Phys. Lett., 1987, vol. 51, p. 2040.

    Article  CAS  Google Scholar 

  172. Hsiao, M.C. and Wan, C.C., The effect of pH on the localized etching process induced by laser irradiation, J. Electrochem. Soc., 1994, vol. 141, p. 943.

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed with support of Ministry of Science and Higher Education of Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Davydov or V. M. Volgin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Kabanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, A.D., Volgin, V.M. Electrochemical Local Maskless Micro/Nanoscale Deposition, Dissolution, and Oxidation of Metals and Semiconductors (A Review). Russ J Electrochem 56, 52–81 (2020). https://doi.org/10.1134/S1023193520010036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520010036

Keywords:

Navigation