Skip to main content
Log in

Stress Corrosion Cracking of Simulated Weld Heat-Affected Zone on X100 Pipeline Steel in Carbonate/Bicarbonate Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The stress corrosion cracking (SCC) of a simulated weld heat-affected zone (HAZ) in X100 pipeline steel in a carbonate/bicarbonate solution was studied at the open-circuit potential (OCP) and various cathodic potentials. Microstructure of the weld HAZ was simulated by Gleeble processing. Results showed that the steel had a higher sensitivity to SCC at the OCP than at the cathodic potentials. Moreover, the SCC process at − 850 mV was controlled by both anodic dissolution and hydrogen embrittlement (HE), while the SCC was due to HE at − 1200 mV. The SCC occurred at the intercritical HAZ at the cathodic potential because of its lower strength than that of the other weld areas. The fracture modes at the cathodic potentials were all intergranular and transgranular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Fan, C.W. Du, Z.Y. Liu, and X.G. Li, Stress Corrosion Cracking of X80 Pipeline Steel Exposed to High pH Solutions with Different Concentrations of Bicarbonate, Int J Miner Metall Mater, 2013, 20(7), p 645–652

    CAS  Google Scholar 

  2. C.W. Li, G.L. Du, and Y.F. Zhai, Cheng, Stress corrosion Cracking Behavior of X70 Pipe Steel in an Acidic Soil Environment, Corros Sci, 2008, 50(8), p 2251–2257

    Google Scholar 

  3. Z.Y. Liu, X.Z. Wang, C.W. Du, J.K. Li, and X.G. Li, Effect of Hydrogen-Induced Plasticity on the Stress Corrosion Cracking of X70 Pipeline Steel in Simulated Soil Environments, Mater Sci Eng: A, 2016, 658, p 348–354

    CAS  Google Scholar 

  4. A.R.H. Far, S.H.M. Anijdan, and S.M. Abbasi, The Effect of Increasing Cu and Ni on a Significant Enhancement of Mechanical Properties of High Strength Low Alloy, Low Carbon Steels of HSLA-100 Type, Mater. Sci. Eng. A, 2019, 746, p 384–393

    CAS  Google Scholar 

  5. S.H.M. Anijdan, M. Sabzi, The Evolution of Microstructure of an high Ni HSLA X100 Forged Steel Slab by Thermomechanical Controlled Processing. TMS Ann Meet Exhib, pp. 145–156 (2018)

  6. A.R.H. Far, S.H.M. Anijdan, M. Abbasi, The Effect of Ni and Cu Addition on Mechanical Behavior of Thermomechanically Controlled Processed HSLA X100 Steels, in TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings (2019), pp 579–590

  7. M.C. Li and Y.F. Cheng, Mechanistic Investigation of Hydrogen-Enhanced Anodic Dissolution of X-70 Pipe Steel and Its Implication on Near-Neutral pH SCC of Pipelines, Electrochim. Acta, 2007, 52(28), p 8111–8117

    CAS  Google Scholar 

  8. Z.Y. Liu, Q. Li, Z.Y. Cui, W. Wu, Z.Z.Y. Liu, Q. Li, Z.Y. Cui, W. Wu, Z. Li, C.W. Du, and X.G. Li, Field Experiment of Stress Corrosion Cracking Behavior of High Strength Pipeline Steels in Typical Soil Environments, Constr. Build. Mater., 2017, 148, p 131–139

    CAS  Google Scholar 

  9. M. Zhu, C. Du, X. Li, Z. Liu, S. Wang, T. Zhao, and J. Jia, Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution, J. Mater. Eng. Perform., 2014, 23(4), p 1358–1365

    CAS  Google Scholar 

  10. X. Li, J. Liu, J. Sun, X. Lin, C. Li, and N. Cao, Effect of Microstructural Aspects in the Heat-Affected Zone of High Strength Pipeline Steels on the Stress Corrosion Cracking Mechanism: Part Iacidic Soil Environment, Corros. Sci., 2019, 160, p 108167

    Google Scholar 

  11. Z. Lu, J. Chen, T. Shoji, Y. Takeda, and S. Yamazaki, Characterization of Microstructure, Local Deformation and Microchemistry in Alloy 690 Heat-Affected Zone and Stress Corrosion Cracking in High Temperature Water, J. Nuclear Mater., 2015, 465, p 471–481

    CAS  Google Scholar 

  12. L.W. Wang, C.W. Du, Z.Y. Liu, X.H. Wang, and X.G. Li, Influence of Carbon on Stress Corrosion Cracking of High Strength Pipeline Steel, Corros. Sci., 2013, 76, p 486–493

    CAS  Google Scholar 

  13. L.W. Wang, X.H. Wang, Z.Y. Cui, Z.Y. Liu, C.W. Du, and X.G. Li, Effect of Alternating Voltage on Corrosion of X80 and X100 Steels in a Chloride Containing Solution—Investigated by AC Voltammetry Technique, Corros. Sci., 2014, 86, p 213–222

    CAS  Google Scholar 

  14. Z. Cui, Z. Liu, L. Wang, X. Li, C. Du, and X. Wang, Effect of Plastic Deformation on the Electrochemical and Stress Corrosion Cracking Behavior of X70 Steel in Near-Neutral pH Environment, Mater. Sci. Eng., A, 2016, 677, p 259–273

    CAS  Google Scholar 

  15. C.F. Dong, Z.Y. Liu, X.G. Li, and Y.F. Cheng, Effects of Hydrogen-Charging on the Susceptibility of X100 Pipeline Steel to Hydrogen-Induced Cracking, Int. J. Hydrogen Energy, 2009, 34(24), p 9879–9884

    CAS  Google Scholar 

  16. Z.Y. Liu, X.G. Li, and Y.F. Cheng, Effect of Strain Rate on Cathodic Reaction During Stress Corrosion Cracking of X70 Pipeline Steel in a Near-Neutral pH Solution, J. Mater. Eng. Perform., 2010, 20(7), p 1242–1246

    Google Scholar 

  17. A.Q. Fu and Y.F. Cheng, Electrochemical Polarization Behavior of ×70 Steel in Thin Carbonate/Bicarbonate Solution Layers Trapped Under a Disbonded Coating and Its Implication on Pipeline SCC, Corros. Sci., 2010, 52(7), p 2511–2518

    CAS  Google Scholar 

  18. M.C. Li and Y.F. Cheng, Corrosion of the Stressed Pipe Steel in Carbonate—Bicarbonate Solution Studied by Scanning Localized Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2008, 53(6), p 2831–2836

    CAS  Google Scholar 

  19. Z.Y. Liu, X.G. Li, and Y.F. Cheng, Mechanistic Aspect of Near-Neutral pH Stress Corrosion Cracking of Pipelines Under Cathodic Polarization, Corros. Sci., 2012, 55, p 54–60

    CAS  Google Scholar 

  20. Z.Y. Liu, X.G. Li, C.W. Du, and Y.F. Cheng, Local Additional Potential Model for Effect of Strain Rate on SCC of Pipeline Steel in an Acidic Soil Solution, Corros. Sci., 2009, 51(12), p 2863–2871

    CAS  Google Scholar 

  21. Z.Y. Liu, L. Lu, Y.Z. Huang, C.W. Du, and X.G. Li, Mechanistic Aspect of Non-Steady Electrochemical Characteristic During Stress Corrosion Cracking of an X70 Pipeline Steel in Simulated Underground Water, Corrosion, 2014, 70(7), p 678–685

    CAS  Google Scholar 

  22. Z.H. Fu, T. Li, M.L. Shan, G.Q. Gou, Z.Y. Zhu, C.P. Ma, W. Gao, and Y.C. Hu, Hydrogen Atoms on the SCC Behavior of SUS301L-MT Stainless Steel Laser-Arc Hybrid Welded Joints, Corros. Sci., 2019, 148, p 272–280

    CAS  Google Scholar 

  23. Z. Liu, X. Gao, L. Du, J. Li, X. Zhou, X. Wang, Y. Wang, C. Liu, G. Xu, and R.D.K. Misra, Hydrogen Assisted Cracking and CO2 Corrosion Behaviors of Low-Alloy Steel with High Strength Used for Armor Layer of Flexible Pipe, Appl. Surf. Sci., 2018, 440, p 974–991

    CAS  Google Scholar 

  24. V. Venegas, F. Caleyo, T. Baudin, J.H. Espina-Hernández, and J.M. Hallen, On the role of Crystallographic Texture in Mitigating Hydrogen-Induced Cracking in Pipeline Steels, Corros. Sci., 2011, 53(12), p 4204–4212

    CAS  Google Scholar 

  25. X. Zhong, S.C. Bali, and T. Shoji, Effects of Dissolved Hydrogen and Surface Condition on the Intergranular Stress Corrosion Cracking Initiation and Short Crack Growth Behavior of Non-sensitized 316 Stainless Steel in Simulated PWR priMARY water, Corros. Sci., 2017, 118, p 143–157

    CAS  Google Scholar 

  26. H.Y. Tian, X. Wang, Z.Y. Cui, Q.K. Lu, L.W. Wang, L. Li, Y. Li, and D.W. Zhang, Electrochemical Corrosion, Hydrogen Permeation and Stress Corrosion Cracking Behavior of E690 Steel in Thiosulfate-Containing Artificial Seawater, Corros. Sci., 2018, 144, p 145–162

    CAS  Google Scholar 

  27. L.W. Wang, Z.Y. Liu, Z.Y. Cui, C.W. Du, X.H. Wang, and X.G. Li, In Situ Corrosion Characterization of Simulated Weld Heat Affected Zone on API, X80 Pipeline Steel, Corros. Sci., 2014, 85, p 401–410

    CAS  Google Scholar 

  28. W. Wu, Z. Liu, X. Li, C. Du, and Z. Cui, Influence of Different Heat-Affected Zone Microstructures on the Stress Corrosion Behavior and Mechanism of High-Strength Low-Alloy Steel in a Sulfurated Marine Atmosphere, Mater. Sci. Eng., A, 2019, 759, p 124–141

    CAS  Google Scholar 

  29. H. Saffari, M. Shamania, A. Barhrami, and J.A. Szpunar, Effects of ERNiCr-3 Butter Layer on the Microstructure and Mechanical Properties of API, 5L X65/AISI304 Dissimilar Joint, J. Manuf. Processes, 2020, 50, p 305–318

    Google Scholar 

  30. N.N. Tshilwane and J.W. van der Merwe, Stress Corrosion Cracking of Laser Alloyed 304L Stainless Steel with Ru in Hot Chloride Solution, Surf. Coat. Technol., 2018, 347, p 414–419

    CAS  Google Scholar 

  31. L. Wang, J. Xin, L. Cheng, K. Zhao, B. Sun, J. Li, X. Wang, and Z. Cui, Influence of Inclusions on Initiation of Pitting Corrosion And Stress Corrosion Cracking of X70 Steel in Near-Neutral pH Environment, Corros. Sci., 2019, 147, p 108–127

    CAS  Google Scholar 

  32. H. Ma, Z. Liu, C. Du, X. Li, and Z. Cui, Comparative Study of the SCC Behavior of E690 Steel and Simulated HAZ Microstructures in a SO2-Polluted Marine Atmosphere, Mater. Sci. Eng., A, 2016, 650, p 93–101

    CAS  Google Scholar 

  33. H. Ma, Z. Liu, C. Du, H. Wang, C. Li, and X. Li, Effect of Cathodic Potentials on the SCC Behavior of E690 Steel in Simulated Seawater, Mater. Sci. Eng., A, 2015, 642, p 22–31

    CAS  Google Scholar 

  34. K.W. Andrews, Empirical Formulae for the Calculation of Some Transformation Temperatures, Iron steel Inst, 1965, 203, p 721–727

    CAS  Google Scholar 

  35. S.M. Bruemmer, M.J. Olszta, M.B. Toloczko, and D.K. Schreiber, Grain Boundary Selective Oxidation and Intergranular Stress Corrosion Crack Growth of High-Purity Nickel Binary Alloys in High-Temperature Hydrogenated Water, Corros. Sci., 2018, 131, p 310–323

    CAS  Google Scholar 

  36. H. Tian, J. Xin, Y. Li, X. Wang, and Z. Cui, Combined Effect of Cathodic Potential and Sulfur Species on Calcareous Deposition, Hydrogen Permeation, and Hydrogen Embrittlement of a Low Carbon Bainite Steel in Artificial Seawater, Corros. Sci., 2019, 158, p 108089

    Google Scholar 

  37. S.M. Teus, V.G. Gavriljuk, On a correlation between hydrogen effects on atomic interactions and mobility of grain boundaries in the alpha-iron. Stage II. Mobility of grain boundaries in the H-charged α-iron, Mater. Lett. 126859 (2019)

  38. M. Connolly, M. Martin, P. Bradley, D. Lauria, A. Slifka, R. Amaro, C. Looney, and J.-S. Park, In Situ High Energy X-ray Diffraction Measurement of Strain and Dislocation Density Ahead of Crack Tips Grown in Hydrogen, Acta Mater., 2019, 180, p 272–286

    CAS  Google Scholar 

  39. A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, and R.O. Ritchie, Hydrogen-Enhanced-Plasticity Mediated Decohesion for Hydrogen-Induced Intergranular and “Quasi-Cleavage” Fracture of Lath Martensitic Steels, J. Mech. Phys. Solids, 2018, 112, p 403–430

    CAS  Google Scholar 

  40. F. Sun, S. Ren, Z. Li, Z. Liu, X. Li, and C. Du, Comparative Study on the Stress Corrosion Cracking of X70 Pipeline Steel in Simulated Shallow and Deep Sea Environments, Mater. Sci. Eng., A, 2017, 685, p 145–153

    CAS  Google Scholar 

  41. V. Giorgetti, E.A. Santos, J.B. Marcomini, and V.L. Sordi, Stress Corrosion Cracking and Fatigue Crack Growth of an API, 5L X70 Welded Joint in An Ethanol Environment, Int. J. Press. Vessels Pip., 2019, 169, p 223–229

    CAS  Google Scholar 

  42. B.A. Kessal, C. Fares, M.H. Meliani, A. Alhussein, O. Bouledroua, and M. François, Effect of Gas Tungsten Arc Welding Parameters on the Corrosion Resistance and the Residual Stress of Heat Affected Zone, Eng. Fail. Anal., 2020, 107, p 104200

    Google Scholar 

  43. K.E. Nygren, K.M. Bertsch, S. Wang, H. Bei, A. Nagao, and I.M. Robertson, Hydrogen Embrittlement in Compositionally Complex FeNiCoCrMn FCC Solid Solution Alloy, Curr. Opin. Solid State Mater. Sci., 2018, 22(1), p 1–7

    CAS  Google Scholar 

  44. K.E. Nygren, S. Wang, K.M. Bertsch, H. Bei, A. Nagao, and I.M. Robertson, Hydrogen Embrittlement of the Equi-Molar FeNiCoCr Alloy, Acta Mater., 2018, 157, p 218–227

    CAS  Google Scholar 

  45. S. Wang, M.L. Martin, P. Sofronis, S. Ohnuki, N. Hashimoto, and I.M. Robertson, Hydrogen-Induced Intergranular Failure of Iron, Acta Mater., 2014, 69, p 275–282

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Key R&D Program of China (no. 2017YFF0210400) and Open Fund of Shandong Key Laboratory of Corrosion Science (no. KLCS201909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Longfei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longfei, S., Zhiyong, L., Xiaogang, L. et al. Stress Corrosion Cracking of Simulated Weld Heat-Affected Zone on X100 Pipeline Steel in Carbonate/Bicarbonate Solution. J. of Materi Eng and Perform 29, 2574–2585 (2020). https://doi.org/10.1007/s11665-020-04750-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04750-9

Keywords

Navigation