Skip to main content
Log in

Modification of POSS hybrids by ionic liquid simultaneously prolonging time to ignition and improving flame retardancy for polystyrene

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polystyrene (PS) with great flame retardancy has been achieved by addition of polyhedral oligomeric silsesquioxane (POSS). However, the POSS/PS composite showed easy-ignition behavior leading to fire hazard exposed. Aiming to prolong time to ignition (TTI) and improve flame retardancy simultaneously, using non-flammable modifier to decorate POSS is a facile method. Here, two kinds of POSS hybrids (POSS-ILs), denoted as POSS-EVIM and POSS-VIPSP, were synthesized by free radical copolymerization between vinyl POSS and two kinds of ionic liquid, commercial [EVIm]BF4 and Brønsted ionic liquid, respectively. The polystyrene-based composites (POSS-ILs/PS) were prepared by incorporated POSS-ILs into polystyrene. The results of thermal gravimetric analysis test evidenced that both POSS-ILs increased char yield and decreased decomposed rate of composites. Compared with neat PS, the TTI of POSS-ILs/PS was prolonged by 26 s and 21 s, and meanwhile, the fire hazard was decreased due to reduction of peak value of heat release rate (PHRR) and smoke release rate (PSPR) in cone calorimeter test. Scanning electron microscope observed compact residue of POSS-EVIM/PS and honeycombed residual morphology of POSS-VIPSP/PS, and additionally, both of these residual char possessed higher degree of graphitization than that of PS and POSS/PS in Raman spectrum, suggesting good physical barrier for matrix from heat and oxygen. Besides, the flexural strength of both POSS-ILs/PS composites were increased compared with neat PS. Taking the results above mentioned, POSS modified by ionic liquid can be a decent candidate to prolong time to ignition, simultaneously improve fire safety and mechanical properties for polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Patrick JF, Robb MJ, Sottos NR, Moore JS, White SR (2016) Polymers with autonomous life-cycle control. Nature 540(7633):363–370

    Article  CAS  Google Scholar 

  2. Sengupta R, Bhattacharya M, Bandyopadhyay S et al (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670

    Article  CAS  Google Scholar 

  3. Guo JH, Liu GT, Guo YL et al (2019) Enhanced flame retardancy and smoke suppression of polypropylene by incorporating zinc oxide nanowires. J Polym Res 26(1):19

    Article  Google Scholar 

  4. Tian L, Li X, Wang LR et al (2019) Synthesis and characterization of an efficient flame retardant based on aromatic ring and phosphate ester for epoxy resin. Polym Eng Sci 59:E406–E413

    Article  CAS  Google Scholar 

  5. Han Y, Wu Y, Shen M et al (2013) Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J Mater Sci 48(12):4214–4222

    Article  CAS  Google Scholar 

  6. Durkin DP, Gallagher MJ, Frank BP et al (2017) Phosphorus-functionalized multi-wall carbon nanotubes as flame-retardant additives for polystyrene and poly (methyl methacrylate). J Therm Anal Calorim 130(2):735–753

    Article  CAS  Google Scholar 

  7. Shi YQ, Yu B, Duan LJ, Gui Z, Wang B, Hu Y, Yuen RKK (2017) Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J Hazard Mater 332:87–96

    Article  CAS  Google Scholar 

  8. Neto JCD, Botan R, Lona LMF et al (2015) Polystyrene/kaolinite nanocomposite synthesis and characterization via in situ emulsion polymerization. Polym Bull 72(3):387–404

    Article  Google Scholar 

  9. Benaddi H, Benachour D, Grohens Y (2016) Preparation and characterization of polystyrene-MgAl layered double hydroxide nanocomposites using bulk polymerization. J Polym Eng 36(7):681–693

    Article  CAS  Google Scholar 

  10. Hou YB, Hu WZ, Gui Z et al (2017) Preparation of metal-organic frameworks and their application as flame retardants for polystyrene. Ind Eng Chem Res 56(8):2036–2045

    Article  CAS  Google Scholar 

  11. Kilic D, Balta DK, Saloglu D et al (2019) Synthesis and characterization of POSS hybrid organogels using Menschutkin quaternization chemistry. Polym Int 68(3):369–376

    Article  CAS  Google Scholar 

  12. Blanco I, Abate L, Bottino FA (2016) Preparation and thermal characterization of three different series of novel polyhedral Oligomeric Silsesquioxanes/polystyrene Nanocomposites. J Macromol Sci B 55(11):1111–1123

    Article  CAS  Google Scholar 

  13. Blanco I, Bottino FA (2016) Kinetics of degradation and thermal behaviour of branched hepta phenyl POSS/PS nanocomposites. Polym Degrad Stab 129:374–379

    Article  CAS  Google Scholar 

  14. Blanco I, Bottino FA (2018) Synthesis, thermal behavior, and kinetics of degradation of alkyl hepta cyclopentyl polyhedral oligomeric silsesquioxanes/polysterene nanocomposites. J Thermoplast Compos Mater 31(7):913–924

    Article  CAS  Google Scholar 

  15. Blanco I, Bottino FA, Abate L (2016) Influence of n-alkyl substituents on the thermal behaviour of polyhedral Oligomeric Silsesquioxanes (POSSs) with different cage's periphery. Thermochim Acta 623:50–57

    Article  CAS  Google Scholar 

  16. Blanco I, Bottino FA, Cicala G et al (2016) Synthesis and thermal characterization of mono alkyl hepta phenyl POSS/PS nanocomposites. Polym Degrad Stab 134:322–327

    Article  CAS  Google Scholar 

  17. Scott DW (1946) Thermal rearrangement of branched-chain Methylpolysiloxanes. J Am Chem Soc 68:356–358

    Article  CAS  Google Scholar 

  18. Devaux E, Rochery M, Bourbigot S (2002) Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics. Fire Mater 26(4–5):149–154

    Article  CAS  Google Scholar 

  19. Zhang W, Camino G, Yang R (2017) Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance. Prog Polym Sci 67:77–125

    Article  Google Scholar 

  20. Liu L, Hu Y, Song L et al (2007) Lamellar hybrid from octa(γ-chloroaminopropyl) polyhedral oligomeric silsesquioxanes and anionic surfactant by ion-exchange reaction. Mater Lett 61(4):1077–1081

    Article  CAS  Google Scholar 

  21. Liu L, Hu Y, Song L et al (2007) Combustion and thermal properties of OctaTMA-POSS/PS composites. J Mater Sci 42(12):4325–4333

    Article  CAS  Google Scholar 

  22. Liu L, Hu Y, Song L et al (2011) Preparation and characterizations of novel PS composites containing OctaTMA-POSS-based lamellar hybrids. Int J Polym Mater and Po 60(12):947–958

    Article  CAS  Google Scholar 

  23. Takeshi U, Masayoshi W (2008) Macromolecules in ionic liquids: Progress, challenges, and opportunities. Macromolecules 41(11):3739–3749

    Article  Google Scholar 

  24. Shi YQ, Fu T, Xu YJ et al (2018) Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance. Chem Eng J 354:208–219

    Article  CAS  Google Scholar 

  25. Che QT, Liu L, Li ZY et al (2017) Research on methanol permeation of proton exchange membranes with incorporating ionic liquids. J Polym Res 24(10):172

    Article  Google Scholar 

  26. Li XW, Feng YZ, Chen C et al (2018) Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets. J Mater Chem A 6(41):20500–20512

    Article  CAS  Google Scholar 

  27. Hu Y, Xu P, Gui H et al (2015) Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide. Compos Part A-Appl S 77:147–153

    Article  CAS  Google Scholar 

  28. Peng R, Wang Y, Tang W et al (2013) Progress in Imidazolium ionic liquids assisted fabrication of carbon nanotube and Graphene polymer composites. Polymers 5(2):847–872

    Article  Google Scholar 

  29. Chen D, Yi S, Wu W et al (2010) Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using vinyl-POSS derivatives as cross linking agents. Polymer 51(17):3867–3878

    Article  CAS  Google Scholar 

  30. Leng Y, Jiang P, Wang J (2012) A novel Bronsted acidic heteropolyanion-based polymeric hybrid catalyst for esterification. Catal Commun 25:41–44

    Article  CAS  Google Scholar 

  31. Lu D, Zhao JW, Leng Y et al (2016) Novel porous and hydrophobic POSS-ionic liquid polymeric hybrid as highly efficient solid acid catalyst for synthesis of oleate. Catal Commun 83:27–30

    Article  CAS  Google Scholar 

  32. Qi Z, Zhang W, He X et al High-efficiency flame retardency of epoxy resin composites with perfect T8 caged phosphorus containing polyhedral oligomeric silsesquioxanes (P-POSSs). Compos Sci Technol 127:8–19

  33. Blanco I, Bottino FA, Cicala G et al. (2018) The new life of POSS, a very thermally stable nanoparticle. In: Damore A, Acierno D, Grassia L (eds) 9th international conference on times of polymers and composites: from aerospace to nanotechnology, vol 1981. AIP Conference Proceedings. doi:https://doi.org/10.1063/1.5045891

  34. Wang X, Hu YA, Song L et al (2010) Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus-silicon synergism of flame Retardancy. J Polym Sci Polym Phys 48(6):693–705

    Article  CAS  Google Scholar 

  35. Qi Z, Zhang W, He X et al (2016) High-efficiency flame retardency of epoxy resin composites with perfect T-8 caged phosphorus containing polyhedral oligomeric silsesquioxanes (P-POSSs). Compos Sci Technol 127:8–19

    Article  CAS  Google Scholar 

  36. Chen X, Feng X, Jiao C (2017) Combustion and thermal degradation properties of flame-retardant TPU based on EMIMPF6. J Therm Anal Calorim 129(2):851–857

    Article  CAS  Google Scholar 

  37. Bourbigot S, Flambard X, Poutch F et al (2001) Cone calorimeter study of high performance fibres-application to polybenzazole and p-aramid fibres. Polym Degrad Stab 74(3):481–486

    Article  CAS  Google Scholar 

  38. Gangireddy CSR, Wang X, Kan YC et al (2019) Synthesis of a novel DOPO-based polyphosphoramide with high char yield and its application in flame-retardant epoxy resins. Polym Int 68(5):936–945

    Article  CAS  Google Scholar 

  39. Bernard FL, Santos LMD, Schwab MB et al (2019) Polyurethane-based poly (ionic liquid)s for CO2 removal from natural gas. J Appl Polym Sci 136(20):47536

    Article  Google Scholar 

  40. Mishra K, Pandey G, Singh RP (2017) Enhancing the mechanical properties of an epoxy resin using polyhedral oligomeric silsesquioxane (POSS) as nano-reinforcement. Polym Test 62:210–218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant No. 51465036 and No. 21466020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoping Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Cui, J., Guo, J. et al. Modification of POSS hybrids by ionic liquid simultaneously prolonging time to ignition and improving flame retardancy for polystyrene. J Polym Res 27, 101 (2020). https://doi.org/10.1007/s10965-020-02081-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02081-w

Keywords

Navigation