Skip to main content
Log in

Sound velocity in severely deformed aluminum alloys: AA1100 and AA2024

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of severe plastic deformation on properties of AA1100 and AA2024 including the ultrasound velocity and the shear strength during multi-axial compression (MAC) are studied. Additionally, optical microscopy, scanning electron microscopy, and X-ray energy-dispersive spectroscopy are utilized. For both AA1100 and AA2024, an opposite trend is reported in the shear strength and the sound velocity versus deformation strain of MAC. At high strain range, AA1100 and AA2024 samples reach a plateau in the strength due to the occurrence of dynamic recovery. On the other hand, the sound velocity is shown to decrease 11% and 15% for AA1100 and AA2024, respectively. Furthermore, the microstructural evaluation reveals that during severe plastic deformation, grain refining for both aluminum alloys occurs. Remarkably, elongated precipitates for severely deformed AA2024 samples are observed. Both an increase in grains boundaries followed by grain refining and elongated precipitates contribute to ultrasonic wave scattering. The presence of such scattering sites is responsible for a noticeable decrease in sound velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P.J. Blau, J.R. Davis, Nonferrous alloys and special-purpose materials (ASM Handbook, Materials Park, 2000), pp. 222–483

    Google Scholar 

  2. Q. Zhao, B. Holmedal, Mater. Sci. Eng. A 563, 147–151 (2013)

    Google Scholar 

  3. H. Shang, B. Ma, K. Shi, R. Li, G. Li, Mater. Lett. 192, 104–106 (2017)

    Google Scholar 

  4. T. Dorin, F. De Geuser, W. Lefebvre, C. Sigli, A. Deschamps, Mater. Sci. Eng. A 605, 119–126 (2014)

    Google Scholar 

  5. N.D. Alexopoulos, Z. Velonaki, C.I. Stergiou, S.K. Kourkoulis, Mater. Sci. Eng. A 700, 457–467 (2017)

    Google Scholar 

  6. Z. Wang, H. Li, F. Miao, B. Fang, R. Song, Z. Zheng, Mater. Sci. Eng. A 607, 313–317 (2014)

    Google Scholar 

  7. T.C. Lowe, JOM 58, 28–32 (2006)

    Google Scholar 

  8. I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, P.D. Hodgson, Scr. Mater. 58, 163–166 (2008)

    Google Scholar 

  9. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater Sci. 45, 103–189 (2000)

    Google Scholar 

  10. C. Granato, N. Almeida, M. Aguilar, P. Cetlin, Mater. Lett. 174, 153–156 (2016)

    Google Scholar 

  11. S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S.Yu. Mironov, S.L. Semiatin, Scr. Mater. 51, 1147–1151 (2004)

    Google Scholar 

  12. S. Ghosh, C. Xu, T.G. Langdon, Mater. Sci. Eng. A 473, 219–225 (2008)

    Google Scholar 

  13. A.P. Zhilyaev, T.G. Langdon, Prog. Mater Sci. 53, 893–979 (2008)

    Google Scholar 

  14. M.I. Latypov, I.V. Alexandrov, Y.E. Beygelzimer, S. Lee, H.S. Kim, Comput. Mater. Sci. 60, 194–200 (2012)

    Google Scholar 

  15. D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji, Z. Horita, Mater. Sci. Eng. A 519, 105–111 (2009)

    Google Scholar 

  16. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R. Hong, Scr. Mater. 39, 1221–1227 (1998)

    Google Scholar 

  17. R.Z. Valiev, T.G. Langdon, Prog. Mater Sci. 51, 881–981 (2006)

    Google Scholar 

  18. M. Ferry, F. Humphreys, Acta Mater. 44, 3089–3103 (1996)

    Google Scholar 

  19. R. Kapoor, A. Sarkar, R. Yogi, S.K. Shekhawat, I. Samajdar, J.K. Chakravartty, Mater. Sci. Eng. A 560, 404–412 (2013)

    Google Scholar 

  20. X. Xu, Q. Zhang, N. Hu, Y. Huang, T.G. Langdon, Mater. Sci. Eng. A 588, 280–287 (2013)

    Google Scholar 

  21. M. Montazeri-Pour, M.H. Parsa, H.R. Jafarian, S. Taieban, Mater. Sci. Eng. A 639, 705–716 (2015)

    Google Scholar 

  22. X. Yang, D. Wang, Z. Wu, J. Yi, S. Ni, Y. Du, M. Song, Mater. Sci. Eng. A 658, 16–27 (2016)

    Google Scholar 

  23. Q.F. Zhu, L. Li, C.Y. Ban, Z.H. Zhao, Y.B. Zuo, J.Z. Cui, Trans. Nonferrous Met. Soc. China 24, 1301–1306 (2014)

    Google Scholar 

  24. L.F. Pan, L. Chen, W.L. Yan, Adv. Mater. Res. 1064, 26–31 (2014)

    Google Scholar 

  25. K. Rodak, K. Radwański, R.M. Molak, Solid State Phenom. 176, 21–28 (2011)

    Google Scholar 

  26. W. Yan, X. Liu, J. Huang, L. Chen, Mater. Des. 49, 520–524 (2013)

    Google Scholar 

  27. W.C. Liu, M.B. Chen, H. Yuan, Mater. Sci. Eng. A 528, 5405–5410 (2011)

    Google Scholar 

  28. A. Takayama, X. Yang, H. Miura, T. Sakai, Mater. Sci. Eng. A 478, 221–228 (2008)

    Google Scholar 

  29. A. Kundu, R. Kapoor, R. Tewari, J.K. Chakravartty, Scr. Mater. 478, 221–228 (2008)

    Google Scholar 

  30. T. Sakai, H. Miura, X. Yang, Mater. Sci. Eng. A 499, 2–6 (2009)

    Google Scholar 

  31. B. Wang, J. Li, J. Sun, X. Wang, Z. Liu, Mater. Sci. Eng. A 612, 227–235 (2014)

    Google Scholar 

  32. Y. Xu-yue, S.U.N. Zheng-yan, X. Jie, Trans. Nonferrous Met. Soc. China 18, 200–204 (2008)

    Google Scholar 

  33. W. Gan, H. Brokmeier, M. Zheng, K. Wu, Adv. Mater. Res. 147, 879–882 (2010)

    Google Scholar 

  34. H. Miura, H. Hamaji, T. Sakai, T. Fujita, N. Yushinaga, Mater. Sci. Forum 503–504, 293–298 (2006)

    Google Scholar 

  35. A. Bhowmik, S. Biswas, S.S. Dhinwal, A. Sarkar, R.K. Ray, D. Bhattacharjee, Mater. Sci. Forum 703, 774–777 (2011)

    Google Scholar 

  36. V. Soleymani, B. Eghbali, J. Iron. Steel Res. Int. 19, 74–78 (2012)

    Google Scholar 

  37. S.H.Ã. Tang, J.W. Hao, H.L. Pan, NDT E Int. 40, 486–495 (2007)

    Google Scholar 

  38. L.B. Zuev, B.S. Semukhin, K.I. Bushmelyova, N.V. Zarikovskaya, Mater. Lett. 42, 97–101 (2000)

    Google Scholar 

  39. X. Min, H. Kato, N. Narisawa, K. Kageyama, Mater. Sci. Eng. A 392, 87–93 (2005)

    Google Scholar 

  40. A. Hikata, B. Chick, C. Elbaum, R. Truell, Acta Mater. 10, 423–429 (1962)

    Google Scholar 

  41. E.R. Naimon, M. Ledbetter, W.F. Weston, J. Mater. Sci. 10, 1309–1316 (1975)

    ADS  Google Scholar 

  42. M. Taniguchi, Y. Iwashimizu, Ultrasonics 25, 160–165 (1987)

    Google Scholar 

  43. A. Granato, K. Lucke, J. Appl. Phys. 27, 583–593 (1956)

    ADS  Google Scholar 

  44. A. Granato, A. Hikatazt, Acta Metall. 6, 470–480 (1958)

    Google Scholar 

  45. F. Lund, N. Mujica, M.T. Cerda, R. Espinoza, J. Lisoni, Acta Mater. 60, 5828–5837 (2012)

    Google Scholar 

  46. R.B. Thompson, F.J. Margetan, P. Haldipur, L. Yu, A. Li, P. Panetta, H. Wasan, Wave Motion 7, 1–7 (2016)

    Google Scholar 

  47. Z. Keran, M. Mihaljevi, B. Runje, D. Marku, Arch. Civ. Mech. Eng. 17, 375–381 (2017)

    Google Scholar 

  48. F. Tariq, N. Naz, R. Ahmed, J. Nondestructive Eval. 31, 17–33 (2012)

    Google Scholar 

  49. H. Watanabe, Y. Sasakura, N. Ikeo, T. Mukai, J. Alloys Compd. 626, 60–64 (2015)

    Google Scholar 

  50. S.H. Tang, S. Wu, M. Kobayashi, H.L. Pan, Int. J. Solids Struct. 44, 1277–1290 (2007)

    Google Scholar 

  51. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, CIRP Ann. Manuf. Tech. 57, 716–735 (2008)

    Google Scholar 

  52. S. Emami Kervee, P. Pourshayan, F. Nasrollahnezhad, S.K. Moghanaki, M. Kazeminezhad, R.E. Logé, S. Nobakht, Mater. Sci. Tech. 34, 688–697 (2018)

    Google Scholar 

  53. Y.B. Wang, J.C. Ho, X.Z. Liao, H.Q. Li, S.P. Ringer, Y.T. Zhu, Appl. Phys. Lett. 94, 011908 (2009)

    ADS  Google Scholar 

  54. M. Legros, D.S. Gianola, K.J. Hemker, Acta Mater. 56, 3380–3393 (2008)

    Google Scholar 

  55. J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 389, 55–59 (2004)

    Google Scholar 

  56. H. Schmidt, D. Lenz, E. Drescher, K. Lucke, J. Phys. Colloques 42, 339–344 (1981)

    Google Scholar 

  57. B. Raj, V. Moorthy, T. Jayakumar, K.B.S. Rao, Int. Mater. Rev. 48, 273–325 (2003)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Research Board of Sharif University of Technology, Iran, and Prof. Movahedi and Prof. Aashuri for provision of the research facilities used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Kazeminezhad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoubi, F., Khani Moghanaki, S. & Kazeminezhad, M. Sound velocity in severely deformed aluminum alloys: AA1100 and AA2024. Appl. Phys. A 126, 302 (2020). https://doi.org/10.1007/s00339-020-03481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03481-x

Keywords

Navigation