Skip to main content
Log in

Parameter optimization of extrusion-Bc ECA technology and its effect on microstructure and properties of 7075 aluminum alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Equal-Channel Angular Pressing (ECAP) was carried out on 7075 aluminum alloy with a process route of Bc mode, thus, achieving the aims of refining crystal grains and improving alloy plasticity. To save cost and optimize the ECAP process, DEFORM finite element simulation of the ECAP extrusion process was conducted to determine the ratio of die shear Angle to extrusion. The results show that the mold optimum process parameters are 135° for the shear angle (Φ) and λ = 2 the extrusion ratio. The deformation and processing stability of the alloy at the same time met the requirements. From the simulation and experimental results of the ECAP sample, the grain size of 7075 aluminum alloy after Bc-ECAP was obviously refined from 17.311 to 9.310 μm, and the grain shape more round. The equiaxed property of the grain was also improved, and the tissue distribution more uniform. Even though the strength of 7075 aluminum alloy slightly decreased, its plasticity increased significantly from 9.9 to 18.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K. Senthil, M.A. Iqbal, P.S. Chandel et al., Study of the constitutive behavior of 7075-T651 aluminum alloy. Int. J. Impact Eng 108, 171–190 (2017). https://doi.org/10.1016/j.ijimpeng.2017.05.002

    Article  Google Scholar 

  2. J.J. Bhattacharyya, S.R. Agnew, M.M. Lee et al., Measuring and modeling the anisotropic, high strain rate deformation of Al alloy, 7085, plate in T711 temper. Int. J. Plast. (2017). https://doi.org/10.1016/j.ijplas.2017.03.001

    Article  Google Scholar 

  3. P. Zhang, Y. Wang, Effects of heat treatment on the nanoscale precipitation behavior of 7055 aluminum alloy under dynamic shock. Vacuum 152, 150–155 (2018). https://doi.org/10.1016/j.vacuum.2018.03.016

    Article  ADS  Google Scholar 

  4. L. Shuai, H. Dong, S. Lei et al., Corrosion behavior and mechanical properties of Al–Zn–Mg aluminum alloy weld. Corros. Sci. (2017). https://doi.org/10.1016/j.corsci.2017.05.007

    Article  Google Scholar 

  5. F. Khodabakhshi, A.P. Gerlich, Accumulative fold-forging (AFF) as a novel severe plastic deformation process to fabricate a high strength ultra-fine grained layered aluminum alloy structure. Mater. Charact. 136, 229–239 (2018). https://doi.org/10.1016/j.matchar.2017.12.023

    Article  Google Scholar 

  6. K. Kyzioł, S. Kluska, M. Januś et al., Chemical composition and selected mechanical properties of Al–Zn alloy modified in plasma conditions by RF CVD. Appl. Surf. Sci. 311, 33–39 (2014). https://doi.org/10.1016/j.apsusc.2014.04.193

    Article  ADS  Google Scholar 

  7. K. Kyzioł, K. Koper et al., Plasmochemical modification of aluminum–zinc alloys using NH3-Ar atmosphere with anti-wear coatings deposition. Mater. Chem. Phys. (2017). https://doi.org/10.1016/j.matchemphys.2016.12.046

    Article  Google Scholar 

  8. H. Alihosseini, M.A. Zaeem, K. Dehghani et al., Producing high strength aluminum alloy by combination of equal channel angular pressing and bake hardening. Mater. Lett. 140, 196–199 (2015). https://doi.org/10.1016/j.matlet.2014.10.163

    Article  Google Scholar 

  9. S. Sabbaghianrad, T.G. Langdon, An evaluation of the saturation hardness in an ultrafine-grained aluminum 7075 alloy processed using different techniques. J. Mater. Sci. 50(12), 4357–4365 (2015). https://doi.org/10.1007/s10853-015-8989-x

    Article  ADS  Google Scholar 

  10. L. Tang, G. Xu, Y. Deng et al., Mechanical properties and microstructure of an Al–Zn–Mg–Sc–Zr alloy processed by warm equal channel angular pressing and subsequent aging. JOM (2017). https://doi.org/10.1007/s11837-017-2616-z

    Article  Google Scholar 

  11. M. Chegini, M.H. Shaeri, Effect of equal channel angular pressing on the mechanical and tribological behavior of Al–Zn–Mg–Cu alloy. Mater. Charact. 140, 147–161 (2018). https://doi.org/10.1016/j.matchar.2018.03.045

    Article  Google Scholar 

  12. M. Shaban Ghazani, M.R. Akbarpour, Plastic deformation characteristics of the rotary ECAP with two different routes. Trans. Indian Inst. Met. (2017). https://doi.org/10.1007/s12666-017-1132-8

    Article  Google Scholar 

  13. M. Torabi, A.R. Eivani, H. Jafarian et al., Die design modification to improve workability during equal channel angular pressing: die design modification to improve workability…. Adv. Eng. Mater. 18(8), 1469–1477 (2016). https://doi.org/10.1002/adem.201600110

    Article  Google Scholar 

  14. X.X. Wang, H.E. Min, Z. Zhu et al., Influence of twist extrusion process on consolidation of pure aluminum powder in tubes by equal channel angular pressing and torsion. Trans. Nonferrous Met. Soc. China 25(7), 2122–2129 (2015). https://doi.org/10.1016/S1003-6326(15)63823-7

    Article  Google Scholar 

  15. G. Deng, C. Lu, L. Su et al., Influence of outer corner angle (OCA) on the plastic deformation and texture evolution in equal channel angular pressing. Comput. Mater. Sci. 81, 79–88 (2014). https://doi.org/10.1016/j.commatsci.2013.07.006

    Article  Google Scholar 

  16. S.G. Mehdi, F.I. Ali, B. Behzad, Analysis of the plastic strain distribution and damage accumulation during T-shaped equal channel angular pressing. Trans. Indian Inst. Met. (2018). https://doi.org/10.1007/s12666-018-1387-8

    Article  Google Scholar 

  17. C. Yu, Study on ECAP Process and Numerical Simulation of 7075 Aluminum Alloy (Nanchang Aeronautical University, Nanchang, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Chen, H., Jiang, Z. et al. Parameter optimization of extrusion-Bc ECA technology and its effect on microstructure and properties of 7075 aluminum alloy. Appl. Phys. A 126, 298 (2020). https://doi.org/10.1007/s00339-020-03482-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03482-w

Keywords

Navigation