Skip to main content
Log in

Cathodic stripping voltammetric determination of β-cyfluthrin, a pyrethroid insecticide, using polished silver solid amalgam electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work describes an electroanalytical procedure for determination of beta-cyfluthrin (βCF), a pyrethroid insecticide, using polished silver solid amalgam electrode (p-AgSAE) allied to a square-wave cathodic adsorptive stripping voltammetry (SWCASV). Although βCF is non-electroactive in the conventional electrodes, it was accumulated at the p-AgSAE surface as adsorbed mercury salt, allowing their indirect determination using the well-defined reduction peak of mercury complex at − 0.94 V, obtained after adequate experimental and voltammetric optimization. Analytical curves were constructed for βCF, and all analytical parameters were properly evaluated. The proposed methodology was applied in the βCF determination in natural water and tea samples, which were previously filtrated before voltammetric analysis, already the same analysis performed using gas chromatography with mass spectroscopy detection technique employed the solid-phase extraction step. Analytical parameters obtained using both techniques indicated no significant difference at 95% confidence, confirming that the electroanalytical procedure had high robustness, good stability and suitable sensitivity to determination of βCF in complex samples.

Cathodic stripping voltammetric determination of β-cyfluthrin, a pyrethroid insecticide, using polished silver solid amalgam electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carson R (1962) Silent Spring. Houghton Mifflin Company, Massachusetts

  2. Saillenfait A, Ndiaye D, Sabaté J (2016) The estrogenic and androgenic potential of pyrethroids in vitro. Review. Toxicol Vitr J 34:321–332

  3. Bini Dhouib I, Annabi A, Jallouli M, Marzouki S, Gharbi N, Elfazaa S, Lasram MM (2016) Carbamates pesticides induced immunotoxicity and carcinogenicity in human: a review. J Appl Biomed 14:85–90

    Article  Google Scholar 

  4. Lu Z, Gan J, Cui X, Delgado-Moreno L, Lin K (2019) Understanding the bioavailability of pyrethroids in the aquatic environment using chemical approaches. Environ Int 129:194–207

    Article  CAS  Google Scholar 

  5. Center NPI (1987) What is cyfluthrin? http://www.npic.orst.edu/factsheets/cyfluthringen.pdf Accessed 21 Jan 2020

  6. ANVISA - Agência Nacional de Vigilância Sanitária (2020) Índice monográfico: Ciflutrina. http://portal.anvisa.gov.br/documents/111215/117782/c30.pdf/a673d6c2-13d1-4182-8467-673cdf00a200 Accessed 21 Jan 2020

  7. Feo ML, Eljarrat E, Barcelo D (2010) Determination of pyrethroid insecticides in environmental samples. Trends Anal Chem 29:692–705

    Article  CAS  Google Scholar 

  8. Qiu H, Gao L, Wang J, Pan J, Yan Y, Zhang X (2017) A precise and efficient detection of Beta-Cyfluthrin via fluorescent molecularly imprinted polymers with ally fluorescein as functional monomer in agricultural products. Food Chem 217:620–627

    Article  CAS  Google Scholar 

  9. Guimarães L, Oliveira D, Helena M, Kurz S, Cezar M, Guimarães M, Leonardo M, Damian O, Zanella R, Neves J, Ferreira F (2019) Development and validation of a method for the analysis of pyrethroid residues in fi sh using GC – MS. Food Chem 297:124944

    Article  Google Scholar 

  10. Rao R, Tsai P, Kumar V (2019) A fast and sensitive analytical procedure for monitoring of synthetic pyrethroid pesticides’ metabolites in environmental water samples. Microchem J 148:355–363

    Article  Google Scholar 

  11. Jeong D, Seon J, Min K, Baek S, Choe S, Pyo J (2019) Simultaneous determination of pyrethroids and their metabolites in human plasma using liquid chromatography tandem mass spectrometry. Forensic Sci Int 302:109846

    Article  CAS  Google Scholar 

  12. Jia C, Mi Y, Liu Z, Zhou W, Gao H, Zhang S, Lu R (2019) Attapulgite modified with covalent organic frameworks as the sorbent in dispersive solid phase extraction for the determination of pyrethroids in environmental water samples. Microchem J 153:104522

    Article  Google Scholar 

  13. Yang X, Lin X, Mi Y, Gao H, Li J, Zhang S, Zhou W, Lu R (2018) Ionic liquid-type surfactant modified attapulgite as a novel and efficient dispersive solid phase material for fast determination of pyrethroids in tea drinks. J Chromatogr B Anal Technol Biomed Life Sci 1089:70–77

    Article  CAS  Google Scholar 

  14. Zhang M, Yang J, Geng X, Li Y, Zha Z, Cui S (2019) Magnetic adsorbent based on mesoporous silica nanoparticles for magnetic solid phase extraction of pyrethroid pesticides in water samples. J Chromatogr A 1598:20–29

    Article  CAS  Google Scholar 

  15. Han Q, Aydan T, Yang L, Zhang X, Liang Q (2018) In-syringe solid-phase extraction for on-site sampling of pyrethroids in environmental water samples. Anal Chim Acta 1009:48–55

    Article  CAS  Google Scholar 

  16. Coomber DC, Tucker DJ, Bond AM (1997) Electrochemical reduction of pyrethroid insecticides based on esters of alfa-cyano-3-phenoxybenzyl alcohol at glassy carbon and mercury electrodes in acetonitrile. J Electroanal Chem 430:215–225

    Article  CAS  Google Scholar 

  17. Coomber DC, Tucker T, Bond AM (1997) Electrochemical reduction of pyrethroid insecticides in non-aqueous solvents. J Electroanal Chem 426:63–73

    Article  CAS  Google Scholar 

  18. Sreedhar M, Reddy MT, Balaji K, Reddy S (2006) Electrochemical reduction behaviour of the synthetic pyrethroid insecticide cyfluthrin and its determination in formulations and environmental samples. Int J Environ Anal Chem 86:757–765

    Article  CAS  Google Scholar 

  19. De Souza D, Melo LC, Correia AN, Lima-Neto P, Mascaro LH, Fatibello-Filho O (2011) Utilização de eletrodos sólidos de amálgama para a determinação analítica de compostos orgânicos e inorgânicos. Quim Nova 34:487–496

    Article  Google Scholar 

  20. Silva LM, De Souza D (2017) Ziram herbicide determination using a polished silver solid amalgam electrode. Electrochim Acta 224:541–550

    Article  CAS  Google Scholar 

  21. Silva CCG, De Souza D (2018) Polished silver solid amalgam electrode and cationic surfactant as tool in electroanalytical determination of methomyl pesticide. Talanta 189:389–396

    Article  CAS  Google Scholar 

  22. Melo LC, Julião MSS, Milhome MAL, Ronaldo F, De Souza D, De Lima-neto P, Correia AN (2018) Square wave adsorptive stripping voltammetry determination of chlorpyriphos in irrigation agricultural water. J Anal Chem 73:707–715

    Article  Google Scholar 

  23. Fogg MVBZ and AG (1993) Electrochemical reduction at mercury electrodes and differential-pulse polarographic determination of pentamidine isethionate. Analyst 118:1157–1162

  24. De Souza D, Mascaro LH, Fatibello-Filho O (2011) The effect of composition of solid silver amalgam electrodes on their electrochemical response. J Solid State Electrochem 15:2023–2029

    Article  CAS  Google Scholar 

  25. Mocak J, Bond AM, Mitchell S, Scollary G (1997) A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques. Pure Appl Chem 69:297–328

    Article  CAS  Google Scholar 

  26. Skoog DA, West DM, Holler FJ, Crouch SR (2014) Fundamentals of analytical chemistry. Cengage Learning, New York

  27. Junting L, Chuichang F (1991) Solid phase extraction method for isolation and clean-up of some pyrethoid insectices from human and plasm. Forensic Sci Int 51(1):89–93

    Article  CAS  Google Scholar 

  28. Cynthia ZG (2007) Handbook of electrochemistry. Elsevier, New York

    Google Scholar 

  29. Gonçalves-Filho D, Silva CG, De Souza D (2020) Pesticides determination in foods and natural waters using solid amalgam-based electrodes: challenges and trends. Talanta 212:120756

    Article  Google Scholar 

  30. Rodrigues LNC, Fogg AG, Zanoni MVB (1999) Cathodic stripping voltammetric determination of cefaclor in pharmaceutical formulations. Anal Lett 32:97–109

    Article  CAS  Google Scholar 

  31. Knaak JB, Dary CC, Zhang X, Gerlach RW, Tornero-Velez R, Chang DT, Goldsmith R, Blancato JN (2012) In: Whitacre DM (ed.) Parameters for pyrethroid insecticide QSAR and PBPK/PD models for human risk assessment, Reviews of Environmental Contamination and Toxicology, Springer, Berlin

  32. Mirceski V, Komorsky-Lovric S, Lovric M (2007) In: Scholz F (ed) Monographs in electrochemistry. Square-Wave Voltammetry. Spring, Berlin

  33. Christian GD, Dasgupta P, Shug K (2014) Analytical chemistry. Elsevier, New York

    Google Scholar 

  34. Ren D, Sun C, Ma G, Yang D, Zhou C, Xie J, Li Y (2018) Determination of pyrethroids in tea brew by GC-MS combined with SPME with multiwalled carbon nanotube coated fiber. Int J Anal Chem 18:8426598

    Google Scholar 

  35. Boonchiangma S, Ngeontae W, Srijaranai S (2012) Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid-liquid microextraction combined with high performance liquid chromatography. Talanta 88:209–215

    Article  CAS  Google Scholar 

  36. Analytical Methods Committee (1987) Recommendations for the definition, estimation and use of the detection limit. Analyst 112:199–204

    Article  Google Scholar 

  37. Gopal M, Niwas R, Devakumar C (2015) Analysis of synthetic pyrethroids by gas chromatography–mass spectrometry. Agric Res 4:208–214

    Article  CAS  Google Scholar 

Download references

Funding

This study is financially supported by FAPEMIG (process APQ APQ 02528-14 and APQ-02704-17), FAPESP, CAPES and CNPq (process 150223/2019-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djenaine De Souza.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C.C.G., Silva, L.M., e Silva, B.C. et al. Cathodic stripping voltammetric determination of β-cyfluthrin, a pyrethroid insecticide, using polished silver solid amalgam electrode. J Solid State Electrochem 24, 1819–1826 (2020). https://doi.org/10.1007/s10008-020-04538-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04538-w

Keywords

Navigation