Skip to main content

Advertisement

Log in

Transfer Energetics of Some Nucleobases in Aqueous Protic Ethylene Glycol Mixtures

  • Original Research
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this article spectrophotometry is applied to measure the saturated solubility of some nucleobases in aquo-organic solvent mixtures of protic ethylene glycol at five equi-distant temperatures from 288.15 to 308.15 K under experimental pressure, p = 0.1 MPa. Standard Gibbs energies \([\Delta G_{\text{t}}^{^\circ } (i)]\) and entropies \([T\Delta S_{\text{t}}^{^\circ } (i)]\) of transfer from water to aqueous mixture of protic ethylene glycol have been evaluated at 298.15 K. The chemical contributions of these energetics \([\Delta G_{\text{t,chem}}^{^\circ } (i)]\) and \([T\Delta S_{\text{t,chem}}^{^\circ } (i)]\) of the involved nucleic acid bases have been computed by subtracting the cavity effect, dipole–dipole and dipole-induced dipole type interaction effects. The chemical composition of transfer energetics of nucleo bases is guided by different effects like dispersion interaction, basicity-acidity, hydrogen bonding, hydrophobic and hydrophilic interaction effects of aqueous ethylene glycol as compared to that of the reference solvent, water. The cavity effect has been estimated by using the Scaled Particle Theory. Computation of dipole–dipole and dipole-induced interactions has been performed using Keesom orientation expressions. The trend of variation of Gibbs energies due to chemical interactions are guided by decreased hydrophobic hydration (HbH), increased acidity and dispersion effects of aqueous ethylene glycol solvent mixtures as compared to the reference solvent, water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 5

Similar content being viewed by others

References

  1. Blanco, A., Blanco, G.: Nucleic acids. Med. Biochem. 6, 121–140 (2017)

    Article  Google Scholar 

  2. Green, D.E., Goldberger, R.: Molecular Insights into the Living Process. Academic Press, New York (1967)

    Google Scholar 

  3. Rios, A.C., Tor, Y.: On the origin of the canonical nucleobases: an assessment of selection pressures across chemical and early biological evolution. Isr. J. Chem. 53, 1–15 (2013)

    Article  Google Scholar 

  4. Ghosh, S., Saha, S., Mondal, S., Dolui, B.K.: Evaluation and correlation of solubility and solvation thermodynamics of some DNA and RNA bases in aqueous mixtures of dipolar aprotic N,N-dimethyl formamide. J. Solution Chem. 48, 248–270 (2019)

    Article  CAS  Google Scholar 

  5. Kishore, N., Ahluwalia, J.C.: Partial molar heat capacities and volumes of transfer of nucleic acid bases, nucleosides and nucleotides from water to aqueous solutions of sodium and calcium chloride at 25°C. J. Solution Chem. 19, 51–64 (1990)

    Article  CAS  Google Scholar 

  6. Hickey, D.R., Turner, D.H.: Solvent effects on the stability of A7U7p+. Biochemistry 24, 2086–2094 (1985)

    Article  CAS  Google Scholar 

  7. Carrea, G., Pasta, P., Vecchio, G.: Effect of the lyotropic series of anions on denaturation and renaturation of 20 β-hydroxysteroid dehydrogenase. Biochem. Biophys. Acta 784, 16–23 (1984)

    CAS  PubMed  Google Scholar 

  8. Fuller, H.C.: Ethylene glycol–its properties and uses. Ind. Eng. Chem. 16, 624–626 (1924)

    Article  CAS  Google Scholar 

  9. Zimmermann, S.B., Pheiffer, B.H.: Does DNA adopt the C form in concentrated salt solutions or in organic solvent/water mixtures? An X-ray diffraction study of DNA fibers immersed in various media. J. Mol. Biol. 142(3), 315–330 (1980)

    Article  Google Scholar 

  10. Windholz, M.: The Merck Index. An Encyclopedia of Chemicals and Drugs, 10th edn. Merck and Co. Ind., Rahway (1983)

    Google Scholar 

  11. Shugar, D., Fox, J.J.: Spectrophotometric studies of nucleic acid derivatives and related compounds as a function of pH. I. Pyrimidines. Biochem. Biophys. Acta. 9, 199–218 (1952)

    Article  CAS  Google Scholar 

  12. Dolui, B.K., Bhattacharya, S.K., Kundu, K.K.: Solvent effect on deprotonation equilibria of acids of various charge types in non-aqueous isodielectric mixtures of protic ethylene glycol and dipolar aprotic N, N-dimthylformamide at 298.15 K. J. Solution Chem. 37, 987–1003 (2008)

    Article  CAS  Google Scholar 

  13. Roy, S., Mahali, K., Dolui, B.K.: Chemical transfer energetics of a series of homologous α-amino acids in quasi-aprotic 2-methoxyethanol–water mixtures. J. Solution Chem. 45, 574–590 (2016)

    Article  CAS  Google Scholar 

  14. Mahali, K., Roy, S., Dolui, B.K.: Solvation thermodynamics of a series of homologous α-amino acids in non-aqueous binary mixtures of protic ethylene glycol and dipolar aprotic acetonitrile. J. Solution Chem. 42, 1096–1110 (2013)

    Article  CAS  Google Scholar 

  15. Mahali, K., Roy, S., Dolui, B.K.: Solvation chemistry of DL -nor-valine in aqueous mixture of dipolar aprotic N,N-dimethyl-formamide. J. Chin. Chem. Soc. 61, 659–664 (2014)

    Article  CAS  Google Scholar 

  16. Mondal, S., Ghosh, S., Hossain, A., Roy, S., Dolui, B.K.: Thermodynamics of DL-α-aminobutyric acid induced solvation mechanism in aqueous KCl solutions at 288.15–308.15 K. Russ. J. Phys. Chem. A 90, 1798–1805 (2016)

    Article  CAS  Google Scholar 

  17. Marcus, Y.: Ion Solvation. Wiley, Chichester (1985)

    Google Scholar 

  18. Dolui, B.K., Bhattacharyya, S.K., Kundu, K.K.: Single-ion transfer Gibbs energies in binary mixtures of isodielectric protic ethylene glycol and dipolar aprotic N,N-dimethylformamide. Ind. J. Chem. 45A, 2607–2614 (2006)

    CAS  Google Scholar 

  19. Mahali, K., Roy, S., Dolui, B.K.: Solubility and solvation thermodynamics of a series of homologous amino acids in nonaqueous binary mixtures of ethylene glycol and dimethyl sulfoxide. J. Chem. Eng. Data 60, 1233–1241 (2015)

    Article  CAS  Google Scholar 

  20. Pauling, L.: The Nature of the Chemical Bond—An Introduction to Modern Structural Chemistry, 3rd edn. Cornell University Press, Ithaca (1960)

    Google Scholar 

  21. Roy, S., Mahali, K., Dolui, B.K.: Role of glycine as a ‘3D-structure’ maker in aqueous mixture of protophilic dipolar aprotic dimethyl sulphoxide. J. Chem. Pharm. Res. 6, 780–790 (2014)

    Google Scholar 

  22. Please, N.W.: Appendix- estimation of the variance of the data used in the calculation of dissociation constants. Biochem. J. 56(2), 196–198 (1954)

    Article  CAS  Google Scholar 

  23. Papadopoulos, M.G., Waite, J.: The polarisability and second hyperpolarisability of some bio molecules. J. Mol. Struct. 170, 189–196 (1988)

    Article  Google Scholar 

  24. Roy, S., Mahali, K., Dolui, B.K.: Thermodynamic studies of solvation of a series of homologous α-amino acids in aqueous mixtures of protic ethylene glycol at 298.15 K. Biochem. Ind. J. 3(2), 63–68 (2009)

    Google Scholar 

  25. Hartman, K.A., Lord, R.C., Thomas, G.J.: Structural studies of nucleic acids and polynucleotides by infrared and Raman spectroscopy. In: Duchesne, J. (ed.) Physico-Chemical Properties of Nucleic Acids, pp. 1–89. Academic Press, London (1973)

    Google Scholar 

  26. Weast, R.C.: CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 67th edn. CRC Press, Boca Raton (1986)

    Google Scholar 

  27. Dolui, B.K., Bhattacharya, S.K., Kundu, K.K.: Single ion transfer entropies in binary mixtures of isodielectric protic ethylene glycol and dipolar aprotic N,N-dimethylformamide vis-à-vis 3D-structuredness of aqueous co-solvents. Ind. J. Chem. 48A, 504–511 (2009)

    CAS  Google Scholar 

  28. Banerjee, S.K., Kundu, K.K., Das, M.N.: Autoprotolysis constants of ethylene glycol–water mixtures at different temperatures and related thermodynamic quantities. J. Chem. Soc. A. 1967, 166–169 (1967)

    Article  Google Scholar 

  29. Kim, J.I., Cecal, A., Born, H.J., Gomaa, E.A.: Preferential solvation of ions: a critical study of the Ph4AsPh4B assumption for single ion thermodynamics in mixed aqueous–acetonitrile and aqueous–N,N-dimethyl formamide solvents. Z. Phys. Chem. Neue Folge 110, 209–227 (1978)

    Article  CAS  Google Scholar 

  30. Dolui, B.K., Bhattacharya, S.K., Kundu, S.K.: Autoprotolysis constants of ethylene glycol in isodieletric mixtures of ethylene glycol and N,N-dimethyl formamide at 298.15K and the related Gibbs energies of transfer. Ind. J. Chem. 46A, 1081–1089 (2007)

    CAS  Google Scholar 

  31. Mahali, K., Roy, S., Dolui, B.K.: Thermodynamic solvation of a series of homologous α-amino acids in aqueous mixtures of 1, 2-dimethoxymethane. J. Solution Chem. 42, 1472–1487 (2013)

    Article  Google Scholar 

  32. Roy, S., Mahali, K., Mondal, S., Dolui, B.K.: Thermodynamics of DL-alanine solvation in water–dimethylsulfoxide mixtures at 298.15 K. Russ. J. Phys. Chem. A 89, 654–662 (2015)

    Article  CAS  Google Scholar 

  33. Saha, S., Ghosh, S., Ghosh, S., Roy, T., Dolui, B.K.: Mode of hydrophilic and hydrophobic interactions of DL-tyrosine, DL-leucine, DL-isoleucine and DL-threonine in aqueous binary mixture of dipolar aprotic acetonitrile. Chem. Phys. Lett. 732, 136644 (2019)

    Article  CAS  Google Scholar 

  34. Ghosh, S., Mondal, S., Roy, S., Saha, S., Dolui, B.K.: Evaluation and correlation of solubility and solvation energetics of DL-phenylalanine and DL-serine in water and aqueous ethylene glycol solutions. J. Mol. Liq. 249, 659–665 (2018)

    Article  CAS  Google Scholar 

  35. Chen, Y., Ozakib, Y., Czarnecki, M.A.: Molecular structure and hydrongen bonding in pure liquid ethylene glycol–water mixtures. Phys. Chem. Chem. Phys. 15, 18694–18701 (2013)

    Article  CAS  Google Scholar 

  36. Bako, I., Grosz, T., Palinkas, G.: Ethylene glycol dimmers in the liquid phase: a study by X-ray and neutron diffraction. J. Chem. Phys. 118, 3215–3221 (2003)

    Article  CAS  Google Scholar 

  37. Ganguly, S., Kundu, K.K.: Transfer energetics of uracil, thymine, cytosine and adenine in aqueous mixtures of lithium chloride, sodium chloride and potassium chloride. Ind. J. Chem. 34(A), 857–865 (1995)

    Google Scholar 

Download references

Acknowledgements

The authors record their kind thanks to the DST-SAP and the Department of Chemistry, Visva-Bharati for financial assistance and computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijoy Krishna Dolui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Saha, S., Mondal, S. et al. Transfer Energetics of Some Nucleobases in Aqueous Protic Ethylene Glycol Mixtures. J Solution Chem 49, 537–557 (2020). https://doi.org/10.1007/s10953-020-00965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00965-5

Keywords

Navigation