Skip to main content
Log in

Effective nanotherapeutic approach for metastatic breast cancer treatment by supplemental oxygenation and imaging-guided phototherapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metastasis remains the primary cause for mortality of breast cancer. Despite advances in current therapeutic agents, patients with metastatic breast cancer still have poor prognoses. Tumor hypoxia, a key microenvironment factor, is emerging as an attractive target to prevent metastasis and is also involved with resistance to phototherapy. Here, we show an effective nanotherapeutic approach based on manganese dioxide-coated polydopamine nanocarriers to trigger robust anti-tumor and anti-metastasis responses against metastatic breast cancer by supplemental oxygenation and multimodal imaging-guided phototherapies. In cancer cells, the produced oxygen by the developed nanoplatform decreases the expression of hypoxia-inducible factors 1\ga to inhibit tumor metastasis, and enhances the efficacy of photodynamic therapy. This nanotherapeutic approach enables the combined photodynamic/photothermal treatments with great inhibition on cell migration and invasion in vitro. Moreover, the nanotherapeutics effectively suppresses primary tumor progress and inhibits lung metastasis in vivo in a breast cancer mouse model with satisfying biosafety. This study suggests that the tumor hypoxia-targeting nanotherapeutics have great potential for preventing and treating metastatic cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2009. CA Cancer J. Clin.2019, 69, 7–34.

    Article  Google Scholar 

  2. Chaffer, C. L.; Weinberg, R. A. A perspective on cancer cell metastasis. Science2011, 331, 1559–1564.

    CAS  Google Scholar 

  3. Bianchini, G.; Balko, J. M.; Mayer, I. A.; Sanders, M. E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol.2016, 13, 674–690.

    CAS  Google Scholar 

  4. Steeg, P. S. Targeting metastasis. Nat. Rev. Cancer2016, 16, 201–218.

    CAS  Google Scholar 

  5. Massagué, J.; Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature2016, 529, 298–306.

    Google Scholar 

  6. Eckhardt, B. L.; Francis, P. A.; Parker, B. S.; Anderson, R. L. Strategies for the discovery and development of therapies for metastatic breast cancer. Nat. Rev. Drug Discov.2012, 11, 479–497.

    CAS  Google Scholar 

  7. Gilkes, D. M.; Semenza, G. L.; Wirtz, D. Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat. Rev. Cancer2014, 14, 430–439.

    CAS  Google Scholar 

  8. Sahu, A.; Choi, W. I.; Tae, G. Recent progress in the design of hypoxia-specific nano drug delivery systems for cancer therapy. Adv. Therap.2018, 1, 1800026.

    Google Scholar 

  9. Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell2011, 144, 646–674.

    CAS  Google Scholar 

  10. Rankin, E. B.; Giaccia, A. J. Hypoxic control of metastasis. Science2016, 352, 175–180.

    CAS  Google Scholar 

  11. Palazon, A.; Goldrath, A. W.; Nizet, V.; Johnson, R. S. HIF transcription factors, inflammation, and immunity. Immunity2014, 41, 518–528.

    CAS  Google Scholar 

  12. Lu, X.; Kang, Y. Hypoxia and hypoxia-inducible factors: Master regulators of metastasis. Clin. Cancer Res.2010, 16, 5928–5935.

    CAS  Google Scholar 

  13. Siemann, D. W.; Horsman, M. R. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol. Therapeut.2015, 153, 107–204.

    CAS  Google Scholar 

  14. Ye, Y. Q.; Hu, Q. S.; Chen, H.; Liang, K.; Yuan, Y.; Xiang, Y.; Ruan, H.; Zhang, Z.; Song, A. R.; Zhang, H. W. et al. Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy. Nat. Metab.2019, 1, 431–444.

    Google Scholar 

  15. Qian, C. G.; Yu, J. C.; Chen, Y. L.; Hu, Q. Y.; Xiao, X. Z.; Sun, W. J.; Wang, C.; Feng, P. J.; Shen, Q. D.; Gu, Z. Light-activated hypoxiaresponsive nanocarriers for enhanced anticancer therapy. Adv. Mater.2016, 28, 3313–3320.

    CAS  Google Scholar 

  16. Xu, C. N.; Wang, P.; Zhang, J. P.; Tian, H. Y.; Park, K.; Chen, X. S. Pulmonary codelivery of doxorubicin and siRNA by pH-sensitive nanoparticles for therapy of metastatic lung cancer. Small2015, 11, 4321–4333.

    CAS  Google Scholar 

  17. Montagner, M.; Enzo, E.; Forcato, M.; Zanconato, F.; Parenti, A.; Rampazzo, E.; Basso, G.; Leo, G.; Rosato, A.; Bicciato, S. et al. SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature2012, 487, 380–384.

    CAS  Google Scholar 

  18. Xiang, L. S.; Gilkes, D. M.; Chaturvedi, P.; Luo, W. B.; Hu, H. X.; Takano, N.; Liang, H. J.; Semenza, G. L. Ganetespib blocks HIF-1 activity and inhibits tumor growth, vascularization, stem cell maintenance, invasion, and metastasis in orthotopic mouse models of triple-negative breast cancer. J. Mol. Med.2014, 92, 151–164.

    CAS  Google Scholar 

  19. Wong, C. C. L.; Zhang, H. F.; Gilkes, D. M.; Chen, J.; Wei, H.; Chaturvedi, P.; Hubbi, M. E.; Semenza, G. L. Inhibitors of hypoxia-inducible factor 1 block breast cancer metastastic niche formation and lung metastasis. J. Mol. Med.2012, 90, 803–815.

    CAS  Google Scholar 

  20. Wang, T. H.; Yu, C. C.; Lin, Y. S.; Chen, T. C.; Yeh, C. T.; Liang, K. H.; Shieh, T. M.; Chen, C. Y.; Hsueh, C. Long noncoding RNA CPS1-IT1 suppresses the metastasis of hepatocellular carcinoma by regulating HIF-1α activity and inhibiting epithelial-mesenchymal transition. Oncotarget2016, 7, 43588–43603.

    Google Scholar 

  21. Zhao, J. H.; Luo, Y.; Jiang, Y. G.; He, D. L.; Wu, C. T. Knockdown of β-catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1α. Cancer Invest.2011, 29, 377–382.

    CAS  Google Scholar 

  22. Meng, L. T.; Cheng, Y. L.; Tong, X. N.; Gan, S. J.; Ding, Y. W.; Zhang, Y.; Wang, C.; Xu, L.; Zhu, Y. S.; Wu, J. H. et al. Tumor oxygenation and hypoxia inducible factor-1 functional inhibition via a reactive oxygen species responsive nanoplatform for enhancing radiation therapy and abscopal effects. ACS Nano2018, 12, 8308–8322.

    CAS  Google Scholar 

  23. Hatfield, S. M.; Kjaergaard, J.; Lukashev, D.; Schreiber, T. H.; Belikoff, B.; Abbott, R.; Sethumadhavan, S.; Philbrook, P.; Ko, K.; Cannici, R. et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl. Med.2015, 7, 30–42.

    Google Scholar 

  24. Ramanathan, R. K.; Abbruzzese, J.; Dragovich, T.; Kirkpatrick, L.; Guillen, J. M.; Baker, A. F.; Pestano, L. A.; Green, S.; Von Hoff, D. D. A randomized phase II study of PX-12, an inhibitor of thioredoxin in patients with advanced cancer of the pancreas following progression after a gemcitabine-containing combination. Cancer Chemother. Pharmacol.2011, 67, 503–509.

    CAS  Google Scholar 

  25. Williamson, S. K.; Crowley, J. J.; Lara, P. N., Jr.; McCoy, J.; Lau, D. H. M.; Tucker, R. W.; Mills, G. M.; Gandara, D. R. Phase III trial of paclitaxel plus carboplatin with or without tirapazamine in advanced non-small-cell lung cancer: Southwest oncology group trial S0003. J. Clin. Oncol.2005, 9097–9104.

  26. Davidson, A.; Veillard, A. S.; Tognela, A.; Chan, M. M. K.; Hughes, B. G. M.; Boyer, M.; Briscoe, K.; Begbie, S.; Abdi, E.; Crombie, C. et al. A phase III randomized trial of adding topical nitroglycerin to first-line chemotherapy for advanced nonsmall-cell lung cancer: The Australasian lung cancer trials group NITRO trial. Ann. Oncol.2015, 26, 2280–2286.

    CAS  Google Scholar 

  27. Salem, A.; Asselin, M. C.; Reymen, B.; Jackson, A.; Lambin, P.; West, C. M. L.; O’Connor, J. P. B.; Faivre-Finn, C. Targeting hypoxia to improve non-small cell lung cancer outcome. J. Natl. Cancer Inst.2018, 110, 14–30.

    CAS  Google Scholar 

  28. Heyboer, M., III; Sharma, D.; Santiago, W.; McCulloch, N. Hyperbaric oxygen therapy: Side effects defined and quantified. Adv. Wound Care2017, 6, 210–224.

    Google Scholar 

  29. Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev.2014, 114, 10869–10939.

    CAS  Google Scholar 

  30. Pan, M.; Jiang, Q. Y.; Sun, J. L.; Xu, Z.; Zhou, Y. Z.; Zhang, L.; Liu, X. Q. Programming DNA nanoassembly for enhanced photodynamic therapy. Angew. Chem., Int. Ed.2020, 59, 1897–1905.

    CAS  Google Scholar 

  31. Juneja, R.; Lyles, Z.; Vadarevu, H.; Afonin, K. A.; Vivero-Escoto, J. L. Multimodal polysilsesquioxane nanoparticles for combinatorial therapy and gene delivery in triple-negative breast cancer. ACS Appl. Mater. Interfaces2019, 11, 12308–12320.

    CAS  Google Scholar 

  32. Sheng, J. P.; Zhang, L.; Deng, L.; Han, Y. J.; Wang, L. Q.; He, H. C.; Liu, Y. N. Fabrication of dopamine enveloped WO3-x quantum dots as single-NIR laser activated photonic nanodrug for synergistic photothermal/photodynamic therapy against cancer. Chem. Eng. J.2020, 383, 123071–123079

    Google Scholar 

  33. Zou,L. L.; Wang, H.; He, B.; Zeng, L. J.; Tan, T.; Cao, H. Q.; He, X. Y.; Zhang, Z. W.; Guo, S. R.; Li, Y. P. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics2016, 6, 762–772.

    CAS  Google Scholar 

  34. Zhang, D.; Feng, F.; Li, Q. L.; Wang, X. Y.; Yao, L. Nanopurpurinbased photodynamic therapy destructs extracellular matrix against intractable tumor metastasis. Biomaterials2018, 173, 22–33.

    CAS  Google Scholar 

  35. Guo, C. S.; Yu, H. J.; Feng, B.; Gao, W. D.; Yan, M.; Zhang, Z. W.; Li, Y. P.; Liu, S. Q. Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nmlaser-driven photothermal agent. Biomaterials2015, 52, 407–416.

    CAS  Google Scholar 

  36. Feng, B.; Zhou, F. Y.; Xu, Z. A.; Wang, T. T.; Wang, D. G.; Liu, J. P.; Fu, Y. L.; Yin, Q.; Zhang, Z. W.; Yu, H. J. et al. Versatile prodrug nanoparticles for acid-triggered precise imaging and organelle-specific combination cancer therapy. Adv. Funct. Mater.2016, 26, 7431–7442.

    CAS  Google Scholar 

  37. Rocha, L. B.; Gomes-da-Silva, L. C.; Dąbrowski, J. M.; Arnaut, L. G. Elimination of primary tumours and control of metastasis with rationally designed bacteriochlorin photodynamic therapy regimens. Eur. J. Cancer2015, 51, 1822–1830.

    CAS  Google Scholar 

  38. Rousset, N.; Vonarx, V.; Eléouet, S.; Carré, J.; Kerninon, E.; Lajat, Y.; Patrice, T. Effects of photodynamic therapy on adhesion molecules and metastasis. J. Photochem. Photobiol. B: Biol.1999, 52, 65–73.

    CAS  Google Scholar 

  39. Feng, J.; Xu, Z.; Liu, F.; Zhao, Y.; Yu, W. Q.; Pan, M.; Wang, F.; Liu, X. Q. Versatile catalytic deoxyribozyme vehicles for multimodal imaging-guided efficient gene regulation and photothermal therapy. ACS Nano2018, 12, 12888–12901.

    CAS  Google Scholar 

  40. Zhen, W. Y.; Liu, Y.; Lin, L.; Bai, J.; Jia, X. D.; Tian, H. Y.; Jiang, X. E. BSA-IrO2: Catalase-like nanoparticles with high photothermal conversion efficiency and a high X-ray absorption coefficient for anti-inflammation and antitumor theranostics. Angew. Chem., Int. Ed.2018, 57, 10309–10313.

    CAS  Google Scholar 

  41. Li, S. H.; Yang, W.; Liu, Y.; Song, X. R.; Liu, R.; Chen, G. L.; Lu, C. H.; Yang, H. H. Engineering of tungsten carbide nanoparticles for imagingguided single 1064 nm laser-activated dual-type photodynamic and photothermal therapy of cancer. Nano Res.2018, 11, 4859–4873.

    CAS  Google Scholar 

  42. Ma, Z. R.; Wan, H.; Wang, W. Z.; Zhang, X. D.; Uno, T.; Yang, Q. L.; Yue, J. Y.; Gao, H. P.; Zhong, Y. T.; Tian, Y. et al. A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Res.2019, 12, 273–279.

    Google Scholar 

  43. Li, Z. L.; Liu, J.; Hu, Y.; Howard, K. A.; Li, Z.; Fan, X. L.; Chang, M. L.; Sun, Y.; Besenbacher, F.; Chen, C. Y. et al. Multimodal imagingguided antitumor photothermal therapy and drug delivery using bismuth selenide spherical sponge. ACS Nano2016, 10, 9646–9658.

    CAS  Google Scholar 

  44. Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater.2013, 25, 1353–1359.

    CAS  Google Scholar 

  45. Mrówczyński, R. Polydopamine-based multifunctional (nano) materials for cancer therapy. ACS Appl. Mater. Interfaces2018, 10, 7541–7561.

    Google Scholar 

  46. Cen, Y.; Deng, W. J.; Yang, Y.; Yu, R. Q.; Chu, X. Core-shell-shell multifunctional nanoplatform for intracellular tumor-related mRNAs imaging and near-infrared light triggered photodynamic-photothermal synergistic therapy. Anal. Chem.2017, 10321–10328.

  47. Chen, H. C.; Tian, J. W.; He, W. J.; Guo, Z. J. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc.2015, 137, 1539–1547.

    CAS  Google Scholar 

  48. Do, S. H.; Batchelor, B.; Lee, H. K.; Kong, S. H. Hydrogen peroxide decomposition on manganese oxide (pyrolusite): Kinetics, intermediates, and mechanism. Chemosphere2009, 75, 8–12.

    CAS  Google Scholar 

  49. Luo, X. L.; Xu, J. J.; Zhao, W.; Chen, H. Y. A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosens. Bioelectron.2004, 19, 1295–1300.

    CAS  Google Scholar 

  50. Chou, T. C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res.2010, 70, 440–446.

    CAS  Google Scholar 

  51. Yan, R. Q.; Hu, Y. X.; Liu, F.; Wei, S. X.; Fang, D. Q.; Shuhendler, A. J.; Liu, H.; Chen, H. Y.; Ye, D. J. Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorogenic reaction and self-assembly. J. Am. Chem. Soc.2019, 141, 10331–10341.

    CAS  Google Scholar 

  52. Sun, X.; Zhang, G. L.; Du, R. H.; Xu, R.; Zhu, D. W.; Qian, J. C.; Bai, G.; Yang, C.; Zhang, Z. Y.; Zhang, X. et al. A biodegradable MnSiO3@Fe3O4 nanoplatform for dual-mode magnetic resonance imaging guided combinatorial cancer therapy. Biomaterials2019, 194, 151–160.

    CAS  Google Scholar 

  53. Shen, Z. Y.; Song, J. B.; Zhou, Z. J.; Yung, B. C.; Aronova, M. A.; Li, Y.; Dai, Y. L.; Fan, W. P.; Liu, Y. J.; Li, Z. H. et al. Dotted core-shell nanoparticles for T1-weighted MRI of tumors. Adv. Mater.2018, 30, 1803163.

    Google Scholar 

  54. Ji, C. H.; Lu, Z. Z.; Xu, Y. H.; Shen, B. B.; Yu, S. Y.; Shi, D. Selfproduction of oxygen system CaO2/MnO2@PDA-MB for the photodynamic therapy research and switch-control tumor cell imaging. J. Biomed. Mater. Res. B: Appl. Biomater.2018, 106, 2544–2552.

    CAS  Google Scholar 

  55. Wu, Q.; Chen, G.; Gong, K. K.; Wang, J.; Ge, X. X.; Liu, X. Q.; Guo, S. J.; Wang, F. MnO2-laden black phosphorus for MRI-guided synergistic PDT, PTT, and chemotherapy. Matter2019, 1, 496–512.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 81602610 and 21874103), and Fundamental Research Funds for the Central Universities (Nos. 2042018kf1006 and 2042018kf0210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Liu.

Electronic Supplementary Material

12274_2020_2753_MOESM1_ESM.pdf

Effective nanotherapeutic approach for metastatic breast cancer treatment by supplemental oxygenation and imaging-guided phototherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Wang, F., Liu, F. et al. Effective nanotherapeutic approach for metastatic breast cancer treatment by supplemental oxygenation and imaging-guided phototherapy. Nano Res. 13, 1111–1121 (2020). https://doi.org/10.1007/s12274-020-2753-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2753-5

Keywords

Navigation