Skip to main content
Log in

Suppressed threshold voltage roll-off and ambipolar transport in multilayer transition metal dichalcogenide feed-back gate transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The layered semiconducting transition metal dichalcogenides (s-TMDs) have attracted considerable interest as the channel material for field-effect transistors (FETs). However, the multilayer s-TMD transistors usually exhibit considerable threshold voltage (Vth) shift and ambipolar behavior at high source-drain bias, which is undesirable for modern digital electronics. Here we report the design and fabrication of double feedback gate (FBG) transistors, i.e., source FBG (S-FBG) and drain FBG (D-FBG), to combat these challenges. The FBG transistors differ from normal transistors by including an extra feedback gate, which is directly connected to the source/drain electrodes by extending and overlapping the source/drain electrodes over the yttrium oxide dielectrics on s-TMDs. We show that the S-FBG transistors based on multilayer MoS2 exhibit nearly negligible Vth roll-off at large source-drain bias, and the D-FBG multilayer WSe2 transistors could be tailored into either n-type or p-type transport, depending on the polarity of the drain bias. The double FBG structure offers an effective strategy to tailor multilayer s-TMD transistors with suppressed Vth roll-off and ambipolar transport for high-performance and low-power logic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater.2016, 1, 16052.

    Article  CAS  Google Scholar 

  2. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol.2014, 9, 768–779.

    Article  CAS  Google Scholar 

  3. Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett.2011, 11, 3768–3773.

    Article  CAS  Google Scholar 

  4. Liu, L. T.; Lu, Y.; Guo, J. On monolayer MoS2 field-effect transistors at the scaling limit. IEEE Trans. Electron Devices2013, 60, 4133–4139.

    Article  CAS  Google Scholar 

  5. Nourbakhsh, A.; Zubair, A.; Sajjad, R. N.; Tavakkoli, K G, A.; Chen, W.; Fang, S. A.; Ling, X.; Kong, J.; Dresselhaus, M. S.; Kaxiras, E. et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett.2016, 16, 7798–7806.

    Article  CAS  Google Scholar 

  6. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol.2011, 6, 147–150.

    Article  CAS  Google Scholar 

  7. Jariwala, D.; Sangwan, V. K.; Late, D. J.; Johns, J. E.; Dravid, V. P.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl. Phys. Lett.2013, 102, 173107.

    Article  Google Scholar 

  8. Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett.2013, 13, 100–105.

    Article  CAS  Google Scholar 

  9. Liu, Y.; Guo, J.; Wu, Y. C.; Zhu, E. B.; Weiss, N. O.; He, Q. Y.; Wu, H.; Cheng, H. C.; Xu, Y.; Shakir, I. et al. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett.2016, 16, 6337–6342.

    Article  CAS  Google Scholar 

  10. Li, T.; Wan, B. S.; Du, G.; Zhang, B. S.; Zeng, Z. M. Electrical performance of multilayer MoS2 transistors on high-κ Al2O3 coated Si substrates. AIP Adv.2015, 5, 057102.

    Article  Google Scholar 

  11. Abraham, M.; Mohney, S. E. Annealed Ag contacts to MoS2 field-effect transistors. J. Appl. Phys.2017, 122, 115306.

    Article  Google Scholar 

  12. Lin, M. W.; Kravchenko, I. I.; Fowlkes, J.; Li, X. F.; Puretzky, A. A.; Rouleau, C. M.; Geohegan, D. B.; Xiao, K. Thickness-dependent charge transport in few-layer MoS2 field-effect transistors. Nanotechnology2016, 27, 165203.

    Article  Google Scholar 

  13. Agarwal, T.; Soree, B.; Radu, I.; Raghavan, P.; Fiori, G.; Iannaccone, G.; Thean, A.; Heyns, M.; Dehaene, W. Comparison of short-channel effects in monolayer MoS2 based junctionless and inversion-mode field-effect transistors. Appl. Phys. Lett.2016, 108, 023506.

    Article  Google Scholar 

  14. Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett.2013, 102, 042104.

    Article  Google Scholar 

  15. Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano2012, 6, 8563–8569.

    Article  CAS  Google Scholar 

  16. Di Bartolomeo, A.; Genovese, L.; Giubileo, F.; Iemmo, L.; Luongo, G.; Foller, T.; Schleberger, M. Hysteresis in the transfer characteristics of MoS2 transistors. 2D Mater.2017, 5, 015014.

    Article  Google Scholar 

  17. Cho, K.; Park, W.; Park, J.; Jeong, H.; Jang, J.; Kim, T. Y.; Hong, W. K.; Hong, S.; Lee, T. Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors. ACS Nano2013, 7, 7751–7758.

    Article  CAS  Google Scholar 

  18. Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano2011, 5, 7707–7712.

    Article  CAS  Google Scholar 

  19. Zhang, Y. J.; Ye, J. T.; Matsuhashi, Y.; Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett.2012, 12, 1136–1140.

    Article  CAS  Google Scholar 

  20. Zhang, F.; Appenzeller, J. Tunability of short-channel effects in MoS2 field-effect devices. Nano Lett.2015, 15, 301–306.

    Article  CAS  Google Scholar 

  21. Semiconductor Industry Association. ITRS: International technology roadmap for semiconductors (2009).

    Google Scholar 

  22. Qiu, C. G.; Zhang, Z. Y.; Zhong, D. L.; Si, J.; Yang, Y. J.; Peng, L. M. Carbon nanotube feedback-gate field-effect transistor: Suppressing current leakage and increasing on/off ratio. ACS Nano2015, 9, 969–977.

    Article  CAS  Google Scholar 

  23. Ferain, I.; Colinge, C. A.; Colinge, J. P. Multigate transistors as the future of classical metal.oxide.semiconductor field-effect transistors. Nature2011, 479, 310–316.

    Article  CAS  Google Scholar 

  24. Colinge, J. P. Multiple-gate SOI MOSFETs. Solid-State Electron.2004, 48, 897–905.

    Article  CAS  Google Scholar 

  25. Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons: New York, USA, 2006.

    Book  Google Scholar 

  26. Guo, Y.; Wei, X. L.; Shu, J. P.; Liu, B.; Yin, J. B.; Guan, C. R.; Han, Y. X.; Gao, S.; Chen, Q. Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxidesemiconductor field effect transistors. Appl. Phys. Lett.2015, 106, 103109.

    Article  Google Scholar 

  27. Lee, C.; Rathi, S.; Khan, M. A.; Lim, D.; Kim, Y.; Yun, S. J.; Youn, D. H.; Watanabe, K.; Taniguchi, T.; Kim, G. H. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates. Nanotechnology2018, 29, 335202.

    Article  Google Scholar 

  28. Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett.2013, 103, 103501.

    Article  Google Scholar 

  29. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky.Mott limit in van der Waals metal—semiconductor junctions. Nature2018, 557, 696–700.

    Article  CAS  Google Scholar 

  30. Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett.2012, 12, 3788–3792.

    Article  CAS  Google Scholar 

  31. Tosun, M.; Chuang, S.; Fang, H.; Sachid, A. B.; Hettick, M.; Lin, Y. J.; Zeng, Y. P.; Javey, A. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano2014, 8, 4948–4953.

    Article  CAS  Google Scholar 

  32. Liu, H.; Si, M. W.; Deng, Y. X.; Neal, A. T.; Du, Y. C.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Ye, P. D. Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across Schottky barriers. ACS Nano2014, 8, 1031–1038.

    Article  CAS  Google Scholar 

  33. Roy, K.; Mukhopadhyay, S.; Mahmoodi-Meimand, H. Leakage current mechanisms and leakage reduction techniques in deepsubmicrometer CMOS circuits. Proc. IEEE2003, 91, 305–327.

    Article  CAS  Google Scholar 

  34. Bryllert, T.; Wernersson, L. E.; Froberg, L. E.; Samuelson, L. Vertical high-mobility wrap-gated InAs nanowire transistor. IEEE Electron Device Lett.2006, 27, 323–325.

    Article  CAS  Google Scholar 

  35. Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature2006, 441, 489–493.

    Article  CAS  Google Scholar 

  36. Wang, Z. X.; Xu, H. L.; Zhang, Z. Y.; Wang, S.; Ding, L.; Zeng, Q. S.; Yang, L. J.; Pei, T.; Liang, X. L.; Gao, M. et al. Growth and performance of yttrium oxide as an ideal high-κ gate dielectric for carbon-based electronics. Nano Lett.2010, 10, 2024–2030.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X. F. D. acknowledges financial support by ONR through grant number N000141812707. Y. H. acknowledges the financial support from National Science Foundation EFRI-1433541.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfeng Duan.

Electronic Supplementary Material

12274_2020_2760_MOESM1_ESM.pdf

Suppressed threshold voltage roll-off and ambipolar transport in multilayer transition metal dichalcogenide feed-back gate transistors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, P., Wang, Y. et al. Suppressed threshold voltage roll-off and ambipolar transport in multilayer transition metal dichalcogenide feed-back gate transistors. Nano Res. 13, 1943–1947 (2020). https://doi.org/10.1007/s12274-020-2760-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2760-6

Keywords

Navigation