Skip to main content
Log in

The grape ubiquitin ligase VpRH2 is a negative regulator in response to ABA treatment

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Ubiquitin ligase VpRH2 is a negative regulator in the grape ABA pathway by inhibiting ABL1, PYR1 and GRP2A expressions, and its promoter is inhibited by ABA treatment.

Abstract

In higher plants, ubiquitin ligases play key roles in various cellular processes. As in our previous study (Wang et al. in J Exp Bot 68:1669–1687, 2017), grape RING-H2-type ubiquitin ligase gene VpRH2 and its promoter was induced by powdery mildew and showed resistance to the disease. Diverse small-molecule hormones, like salicylic acid (SA), methyl jasmonate (MeJA) or abscisic acid (ABA), play pivotal roles in plant resistance. Here we found that VpRH2 expression could be induced by SA and MeJA treatment, but inhibited by ABA treatment. The promoter of VpRH2 revealed a similar variation trend under exogenous hormone treatments as the gene expression by GUS activity assay. By a series of deletion fragments, the promoter fragment of VpRH2-P656 to VpRH2-P513 was necessary in response to MeJA treatment, and the inhibition of ABA treatment to the VpRH2 promoter was independent of the ABRE motif. Over-expression of VpRH2 in Arabidopsis thaliana plants displayed ABA-insensitive phenotypes at the germination stage compared to wild type plants. In VpRH2 over-expressing Vitis vinifera cv. Thompson Seedless plants after ABA treatments, the expression of the ABA pathway related genes ABL1 and PYR1 showed a suppresive trend. Moreover, VpGRP2A (an VpRH2-interacting protein) also showed a suppresive trend in response to ABA treatment in VpRH2-overexpressing plants. Our results demonstrate that VpRH2 is a negative regulator in the grape ABA signal pathway by inhibiting ABL1, PYR1 and GRP2A expressions, and its promoter was also inhibited by ABA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABRE:

ABA responsive element

GUS:

β-Glucuronidase

hpt:

Hours post treatment

MeJA:

Methyl jasmonate

OERH2:

Transgenic Thompson Seedless over-expressing VpRH2

SA:

Salicylic acid

VpGRP2A:

Vitis pseudoreticulata Glycine-rich RNA-binding protein GRP2A

VpRH2:

Vitis pseudoreticulata RING-H2-type ubiquitin ligase

References

  • Bouquet A, Torregrosa L, Iocco P, Thomas MR (2008) Grapes. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, vol 4. Wiley-Blackwell, Oxford, pp 189–232

    Google Scholar 

  • Bueso E, Rodriguez L, Lorenzo-Orts L, Gonzalez-Guzman M, Sayas E, Muñoz-Bertomeu J, Ibañez C, Serrano R, Rodriguez PL (2014) The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. Plant J 80:1057–1071

    CAS  PubMed  Google Scholar 

  • Cadle-Davidson L, Chicoine DR, Consolie NH (2011) Variation within and among Vitis spp. for foliar resistance to the powdery mildew pathogen Erysiphe necator. Plant Dis 95:202–211

    PubMed  Google Scholar 

  • Cao JD, Chen BH, Wang LJ, Mao J, Zhao X (2010) Cold resistance indexes identification and comprehensive evaluation of grape varieties. Acta Bot Boreal Occident Sin 11:014

    Google Scholar 

  • Cao FY, Yoshioka K, Desveaux D (2011) The roles of ABA in plant–pathogen interactions. J Plant Res 124:489–499

    CAS  PubMed  Google Scholar 

  • Chen L, Hellmann H (2013) Plant E3 ligases: flexible enzymes in a sessile world. Mol Plant 6:1388–1404

    CAS  PubMed  Google Scholar 

  • Cho SK, Ryu MY, Seo DH, Kang BG, Kim WT (2011) The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses. Plant Physiol 157:2240–2257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke SM, Cristescu SM, Miersch O, Harren FJM, Mur LAJ (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187

    CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Craig A, Ewan R, Mesmar J, Gudipati V, Sadanandom A (2009) E3 ubiquitin ligases and plant innate immunity. J Exp Bot 60:1123–1132

    CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    CAS  PubMed  Google Scholar 

  • De Torres-Zabala M, Bennett MH, Truman WH, Grant MR (2009) Antagonism between salicylic and abscisic acid reflects early host–pathogen conflict and moulds plant defence responses. Plant J 59:375–386

    PubMed  Google Scholar 

  • Du Z, Zhou X, Li L, Su Z (2009) PlantsUPS: a database of plants' ubiquitin proteasome system. BMC Genomics 10:227

    PubMed  PubMed Central  Google Scholar 

  • Duplan V, Rivas S (2014) E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity. Front Plant Sci 5:42

    PubMed  PubMed Central  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao T, Liu Z, Wang Y, Cheng H, Yang Q, Guo A, Ren J, Xue Y (2013) UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Res 41:D445–D451

    CAS  PubMed  Google Scholar 

  • Gonzalez-Guzman M, Pizzio GA, Antoni R, Vera-Sirera F, Merilo E, Bassel GW, Fernández MA, Holdsworth MJ, Perez-Amador MA, Kollist H (2012) Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24:2483–2496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman P (2014) ATLs and BTLs, plant-specific and general eukaryotic structurally-related E3 ubiquitin ligases. Plant Sci 215–216:69–75

    PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Jiang CJ, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant Microbe Interact 23:791–798

    CAS  PubMed  Google Scholar 

  • Kim JH, Kim WT (2013) The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol 162:1733–1749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HG, Seo PJ (2016) The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96. Nat Commun 7:12525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Xu Y, Xiao Y, Zhu Z, Xie X, Zhao H, Wang Y (2010) Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta 232:1325–1337

    CAS  PubMed  Google Scholar 

  • Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY (2008) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228:225–240

    CAS  PubMed  Google Scholar 

  • Lim CW, Baek W, Lee SC (2017) The pepper RING type E3 ligase, CaAIRF1, regulates the ABA- and drought-signaling via CaADIP1 protein phosphatase degradation. Plant Physiol 173:2323–2339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25:295–303

    CAS  PubMed  Google Scholar 

  • Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci USA 106:5418–5423

    CAS  PubMed  Google Scholar 

  • Morreale FE, Walden H (2016) Types of ubiquitin ligases. Cell 165:248–248

    CAS  PubMed  Google Scholar 

  • Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1373–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noda S, Yamaguchi M, Tsurumaki Y, Takahashi Y, Nishikubo N, Hattori T, Demura T, Suzuki S, Umezawa T (2013) ATL54, a ubiquitin ligase gene related to secondary cell wall formation, is transcriptionally regulated by MYB46. Plant Biotechnol 30:503–509

    CAS  Google Scholar 

  • Okamoto M, Tsuboi Y, Goda H, Yoshizumi T, Shimada Y, Hirayama T (2012) Multiple hormone treatment revealed novel cooperative relationships between abscisic acid and biotic stress hormones in cultured cells. Plant Biotechnol 29:19–34

    CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Ent SVD, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    CAS  PubMed  Google Scholar 

  • Ryu MY, Cho SK, Kim WT (2010) The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress. Plant Physiol 154:1983–1997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Márquez JA (2009) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668

    CAS  PubMed  Google Scholar 

  • Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P (2008) Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep 27:1053–1063

    CAS  PubMed  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    CAS  PubMed  Google Scholar 

  • Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J (2006) KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18:3415–3428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Qin Y, Li Y, Li M, Ma F (2014) Overexpression of MpGR-RBP1, a glycine-rich RNA-binding protein gene from Malus prunifolia (Willd.) Borkh., confers salt stress tolerance and protects against oxidative stress in Arabidopsis. Plant Cell Tiss Org 119:635–646

    CAS  Google Scholar 

  • Verhage A, Van Wees SCM, Pieterse CMJ (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154:536–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397

    CAS  PubMed  Google Scholar 

  • Wang Y, Liu Y, He P, Chen J, Lamicanra O, Lu J (1995) Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis 34:5

    Google Scholar 

  • Wang S, Liang D, Shi S, Ma F, Shu H, Wang R (2010) Isolation and characterization of a novel drought responsive gene encoding a glycine-rich RNA-binding protein in Malus prunifolia (Willd.) Borkh. Plant Mol Biol Rep 29:125–134

    Google Scholar 

  • Wang L, Xie X, Yao W, Wang J, Ma F, Wang C, Yang Y, Tong W, Zhang J, Xu Y (2017) RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A. J Exp Bot 68:1669–1687

    CAS  PubMed  Google Scholar 

  • Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D (2012) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19:463–476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Yu Y, Ding J, Hua Z, Wang Y (2010) Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta 231:475–487

    CAS  PubMed  Google Scholar 

  • Xu W, Yu Y, Zhou Q, Ding J, Dai L, Xie X, Xu Y, Zhang C, Wang Y (2011) Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitis pseudoreticulata. J Exp Bot 62:2745–2761

    CAS  PubMed  Google Scholar 

  • Yan S, Dong X (2014) Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 20:64–68

    CAS  PubMed  Google Scholar 

  • Yao W, Wang L, Wang J, Ma F, Yang Y, Wang C, Tong W, Zhang J, Xu Y, Wang X (2017) VpPUB24, a novel gene from Chinese grapevine, Vitis pseudoreticulata, targets VpICE1 to enhance cold tolerance. J Exp Bot 68:2933–2949

    CAS  PubMed  Google Scholar 

  • Yu Y, Xu W, Wang S, Xu Y, Li H, Wang Y, Li S (2011) VpRFP1, a novel C4C4-type RING finger protein gene from Chinese wild Vitis pseudoreticulata, functions as a transcriptional activator in defence response of grapevine. J Exp Bot 62:5671–5682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Xu W, Wang J, Wang L, Yao W, Xu Y, Ding J, Wang Y (2013a) A core functional region of the RFP1 promoter from Chinese wild grapevine is activated by powdery mildew pathogen and heat stress. Planta 237(1):293–303

    CAS  PubMed  Google Scholar 

  • Yu Y, Xu W, Wang J, Wang L, Yao W, Yang Y, Xu Y, Ma F, Du Y, Wang Y (2013b) The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor. New Phytol 200:834–846

    CAS  PubMed  Google Scholar 

  • Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912–1929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Zhang H, Cui P, Ding F, Wang G, Li R, Jenks MA, Lu S, Xiong L (2014) The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in Arabidopsis. Plant Physiol 165:1255–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    CAS  PubMed  Google Scholar 

  • Zhu Z, Shi J, Cao J, He M, Wang Y (2012a) VpWRKY3, a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata. Plant Cell Rep 31:2109–2120

    CAS  PubMed  Google Scholar 

  • Zhu Z, Shi J, He M, Cao J, Wang Y (2012b) Isolation and functional characterization of a transcription factor VpNAC1 from Chinese wild Vitis pseudoreticulata. Biotechnol Lett 34:1335–1342

    CAS  PubMed  Google Scholar 

  • Zhu Z, Shi J, Xu W, Li H, He M, Xu Y, Xu T, Yang Y, Cao J, Wang Y (2013) Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. J Plant Physiol 170:923–933

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No. 31171924) and China Agriculture Research Systems for the grape industry (Grant No. CARS-29-yc-3). The authors specifically thank Dr. Alexander (Sandy) Lang from RESCRIPT Co. (New Zealand) for useful language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yao, W. & Wang, Y. The grape ubiquitin ligase VpRH2 is a negative regulator in response to ABA treatment. Planta 251, 88 (2020). https://doi.org/10.1007/s00425-020-03382-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03382-6

Keywords

Navigation