Skip to main content

Advertisement

Log in

RIPK3 is a novel prognostic marker for lower grade glioma and further enriches IDH mutational status subgrouping

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Necroptosis is a necrotic-like cell death pathway in which Receptor-interacting serine/threonine-protein kinase 3 (RIPK3) plays a central role and may induce inflammation and immunity. Lower RIPK3 levels have been correlated with a poor prognosis in breast and colorectal cancer patients. Instead, in gliomas, the most prevalent among central nervous system cancers, necrosis concurs with a more aggressive and lethal outcome, suggesting that, in these cases, necrotic-like pathways may be linked to worse prognoses. Lower-grade gliomas (LGG) exhibit highly diverse clinical behaviors, ranging from slow-paced growth to fast progression to glioblastoma yet patient outcomes cannot be fully predicted through the available markers. To date, IDH mutational status is the most broadly used prognostic marker, albeit several candidates have been proposed to refine LGG subgrouping. Here, we aimed to assess RIPK3 role as a prognostic marker for LGG patients, independently of or in combination with IDH.

Methods

Using publicly available discovery (513 patients) and validation (134 patients) cohorts, we performed Kaplan Meier survival analysis and uni- and multivariate Cox regression models.

Results

RIPK3 is an independent prognostic marker in LGG patients, even when controlled by age and molecular or histological diagnostic criteria. Contrary to what was previously reported for other cancers, high RIPK3 expression levels correlates with an increased risk of death. Importantly, RIPK3 expression levels further split both the mutant and wild-type IDH patients into distinct risk groups.

Conclusion

RIPK3 expression levels can be used in combination with IDH mutational status to better subgroup LGG patients regarding overall survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. https://doi.org/10.1093/neuonc/noy131

    Article  PubMed  PubMed Central  Google Scholar 

  2. Louis DN, Aldape K, Brat DJ, Capper D, Ellison DW, Hawkins C et al (2017) Announcing cIMPACT-NOW: the consortium to inform molecular and practical approaches to CNS tumor taxonomy. Acta Neuropathol. https://doi.org/10.1007/s00401-016-1646-x

    Article  PubMed  Google Scholar 

  3. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Network CGAR, Brat DJ, Verhaak RGW, Aldape KD, Yung WKA, Salama SR et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. https://doi.org/10.1056/NEJMoa1402121

    Article  Google Scholar 

  5. Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR et al (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst. https://doi.org/10.1093/jnci/90.19.1473

    Article  PubMed  Google Scholar 

  6. Bromberg JEC, van den Bent MJ (2009) Oligodendrogliomas: molecular biology and treatment. Oncologist. https://doi.org/10.1634/theoncologist.2008-0248

    Article  PubMed  Google Scholar 

  7. Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, Buckner J et al (2013) Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol. https://doi.org/10.1200/JCO.2012.43.2674

    Article  PubMed  Google Scholar 

  8. Cairncross JG, Wang M, Jenkins RB, Shaw EG, Giannini C, Brachman DG et al (2014) Benefit from procarbazine, lomustine and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol. https://doi.org/10.1200/JCO.2013.49.3726

    Article  PubMed  PubMed Central  Google Scholar 

  9. Baumert BG, Hegi ME, van den Bent MJ, von Deimling A, Gorlia T, Hoang-Xuan K et al (2016) Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033–26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol. https://doi.org/10.1016/S1470-2045(16)30313-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR, Barger GR et al (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med. https://doi.org/10.1056/NEJMoa1500925

    Article  PubMed  PubMed Central  Google Scholar 

  11. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. https://doi.org/10.1016/j.ccr.2010.03.017

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70. https://doi.org/10.1007/s00262-010-0968-0

    Article  CAS  PubMed  Google Scholar 

  13. Eom YH, Kim HS, Lee A, Song BJ, Chae BJ (2016) BCL2 as a subtype-specific prognostic marker for breast cancer. J Breast Cancer 19:252–260. https://doi.org/10.4048/jbc.2016.19.3.252

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vogler M, Butterworth M, Majid A, Walewska RJ, Sun X, Dyer MJS et al (2017) Concurrent up-regulation of BCL-X L and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood 113:4403–4414. https://doi.org/10.1182/blood-2008-08-173310.An

    Article  Google Scholar 

  15. Kumar B, Cordell KG, D’Silva N, Prince ME, Adams ME, Fisher SG et al (2008) Expression of p53 and Bcl-xL as predictive markers for larynx preservation in advanced laryngeal cancer. Arch Otolaryngol—Head Neck Surg 134:363–369. https://doi.org/10.1001/archotol.134.4.363

    Article  PubMed  PubMed Central  Google Scholar 

  16. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  17. He L, Peng K, Liu Y, Xiong J, Zhu FF (2013) Low expression of mixed lineage kinase domain-like protein is associated with poor prognosis in ovarian cancer patients. Onco Targets Ther. https://doi.org/10.2147/OTT.S52805

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dixon SJ, Patel D, Welsch M, Skouta R, Lee E, Hayano M et al (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. https://doi.org/10.7554/eLife.02523

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gao J, Qiu X, Xi G, Liu H, Zhang F, Lv T et al (2018) Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non-small cell lung cancer. Oncol Rep. https://doi.org/10.3892/or.2018.6634

    Article  PubMed  PubMed Central  Google Scholar 

  20. Geserick P, Wang J, Schilling R, Horn S, Harris Bertin PAJ et al (2015) Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis 6:e1884. https://doi.org/10.1038/cddis.2015.240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koo G-B, Morgan MJ, Lee D-G, Kim W-J, Yoon J-H, Koo JS et al (2015) Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res 25:707–725. https://doi.org/10.1038/cr.2015.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McDonald FE, Ironside JW, Gregor A, Wyatt BB, Stewart M, Rye R et al (2002) The prognostic influence of bcl-2 in malignant glioma. Br J Cancer. https://doi.org/10.1038/sj.bjc.6600217

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fels C, Schäfer C, Hüppe B, Bahn H, Heidecke V, Kramm CM et al (2000) Bcl-2 expression in higher-grade human glioma: a clinical and experimental study. J Neurooncol. https://doi.org/10.1023/A:1006484801654

    Article  PubMed  Google Scholar 

  24. Siegelin MD, Gaiser T, Siegelin Y (2009) The XIAP inhibitor Embelin enhances TRAIL-mediated apoptosis in malignant glioma cells by down-regulation of the short isoform of FLIP. Neurochem Int. https://doi.org/10.1016/j.neuint.2009.04.011

    Article  PubMed  Google Scholar 

  25. Zhou W, Yuan J (2014) Necroptosis in health and diseases. Semin Cell Dev Biol 35:14–23. https://doi.org/10.1016/j.semcdb.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  26. Michelson N, Rincon-Torroella J, Quiñones-Hinojosa A, Greenfield JP (2016) Exploring the role of inflammation in the malignant transformation of low-grade gliomas. J Neuroimmunol 297:132–140. https://doi.org/10.1016/j.jneuroim.2016.05.019

    Article  CAS  PubMed  Google Scholar 

  27. Niederkorn JY (2006) See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol. https://doi.org/10.1038/ni1328

    Article  PubMed  Google Scholar 

  28. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  29. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. https://doi.org/10.1126/scisignal.2004088

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bao ZS, Chen HM, Yang MY, Zhang CB, Yu K, Ye WL et al (2014) RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res. https://doi.org/10.1101/gr.165126.113

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhao Z, Meng F, Wang W, Wang Z, Zhang C, Jiang T (2017) Comprehensive RNA-seq transcriptomic profiling in the malignant progression of gliomas. Sci Data. https://doi.org/10.1038/sdata.2017.24

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lausen B, Biometry M (1992) Maximally selected rank statistics. Biometrics. https://doi.org/10.2307/2532740

    Article  Google Scholar 

  33. Okamoto Y, Di Patre PL, Burkhard C, Horstmann S, Jourde B, Fahey M et al (2004) Population-based study on incidence, survival rates, and genetic alterations of low-grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol. https://doi.org/10.1007/s00401-004-0861-z

    Article  PubMed  Google Scholar 

  34. Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. https://doi.org/10.1016/j.cell.2015.12.028

    Article  PubMed  PubMed Central  Google Scholar 

  35. Feng X, Song Q, Yu A, Tang H, Peng Z, Wang X (2015) Receptor-interacting protein kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal cancer. Neoplasma. https://doi.org/10.4149/neo_2015_071

    Article  PubMed  Google Scholar 

  36. Kim SK, Kim W-J, Yoon J-H, Ji J-H, Morgan MJ, Cho H et al (2015) Upregulated RIP3 expression potentiates MLKL phosphorylation-mediated programmed necrosis in toxic epidermal necrolysis. J Invest Dermatol 135:2021–2030. https://doi.org/10.1038/jid.2015.90

    Article  CAS  PubMed  Google Scholar 

  37. Barker CF, Billingham RE (1978) Immunologically privileged sites. Adv Immunol. https://doi.org/10.1016/S0065-2776(08)60930-X

    Article  Google Scholar 

  38. Germano G, Allavena P, Mantovani A (2008) Cytokines as a key component of cancer-related inflammation. Cytokine 43:374–379. https://doi.org/10.1016/j.cyto.2008.07.014

    Article  CAS  PubMed  Google Scholar 

  39. Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E et al (2017) European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. https://doi.org/10.1016/S1470-2045(17)30194-8

    Article  PubMed  Google Scholar 

  40. Cairncross G, Macdonald D, Ludwin S, Lee D, Cascino T, Buckner J et al (1994) Chemotherapy for anaplastic oligodendroglioma. National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 1:11. https://doi.org/10.1200/JCO.1994.12.10.2013

    Article  Google Scholar 

  41. Kristensen BW, Priesterbach-Ackley LP, Petersen JK, Wesseling P (2019) Molecular pathology of tumors of the central nervous system. Ann Oncol 30:1265–1278. https://doi.org/10.1093/annonc/mdz164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Priesterbach-Ackley LP, Wesseling P, Snijders TJ, De Vos FYFL, De Leng WWJ (2019) Molecular tools for the pathologic diagnosis of central nervous system tumors. Neuro-Oncol Pract. https://doi.org/10.1093/nop/npy041

    Article  Google Scholar 

  43. Molenaar RJ, Maciejewski JP, Wilmink JW, Van Noorden CJF (2018) Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene. https://doi.org/10.1038/s41388-017-0077-z

    Article  PubMed  PubMed Central  Google Scholar 

  44. Molenaar RJ, Radivoyevitch T, Maciejewski JP, van Noorden CJF, Bleeker FE (2014) The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim Biophys Acta -Rev Cancer. https://doi.org/10.1016/j.bbcan.2014.05.004

    Article  Google Scholar 

  45. Yang Z, Jiang B, Wang Y, Ni H, Zhang J, Xia J et al (2017) 2-HG inhibits necroptosis by stimulating DNMT1-dependent hypermethylation of the RIP3 promoter. Cell Rep. https://doi.org/10.1016/j.celrep.2017.05.012

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brazil) [Grant Nos. 2016/17628-0 and 2016/19110-0].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Weinlich.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergara, G.A., Eugenio, G.C., Malheiros, S.M.F. et al. RIPK3 is a novel prognostic marker for lower grade glioma and further enriches IDH mutational status subgrouping. J Neurooncol 147, 587–594 (2020). https://doi.org/10.1007/s11060-020-03473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03473-0

Keywords

Navigation