Skip to main content
Log in

Biogenic Amines and the Antioxidant Capacity of Juice and Wine from Brazilian Hybrid Grapevines

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Some biogenic amines (BAs) are used as quality markers in grape-derived products. The prolife of 9 BAs was determined in juices and wines elaborated from hybrid grapes. Low levels of histamine, tyramine and cadaverine were found. Juices elaborated from ‘BRS Rúbea’ showed the highest tyramine levels (1.56 mg/L), while no histamine was found in wines elaborated from ‘Seleção 34’ and its higher content was detected in ‘BRS Carmem’ (3.55 mg/L). Juices elaborated from ‘BRS Violeta’ showed elevated content (472.88 mg/L) of total phenolic compounds (TPC) and mono-hydrated serotonin (6.20 mg/L), and wines elaborated from ‘Violeta’ presented a high serotonin mono-hydrate content (23.63 mg/L) and high antioxidant activity with FRAP test (77.24 mmol FeSO4/L). Juices elaborated from hybrid grapes ‘BRS Violeta’ and wines from ‘BRS Violeta’, ‘Seleção 34’ and ‘Seleção 13’ had high levels of bioactive compounds, emphasizing the great potential of these cultivars for winemaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Lima MDS, Silani IDSV, Toaldo IM et al (2014) Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the northeast region of Brazil. Food Chem 161:94–103. https://doi.org/10.1016/j.foodchem.2014.03.109

    Article  CAS  Google Scholar 

  2. da Silva MJR, da Silva Padilha CV, dos Santos LM et al (2019) Grape juices produced from new hybrid varieties grown on Brazilian rootstocks – bioactive compounds, organic acids and antioxidant capacity. Food Chem 289:714–722. https://doi.org/10.1016/j.foodchem.2019.03.060

    Article  CAS  PubMed  Google Scholar 

  3. Nixdorf SL, Hermosín-Gutiérrez I (2010) Brazilian red wines made from the hybrid grape cultivar Isabel: phenolic composition and antioxidant capacity. Anal Chim Acta 659:208–215. https://doi.org/10.1016/j.aca.2009.11.058

    Article  CAS  PubMed  Google Scholar 

  4. Guo YY, Yang YP, Peng Q, Han Y (2015) Biogenic amines in wine: a review. Int J Food Sci Technol 50:1523–1532. https://doi.org/10.1111/ijfs.12833

    Article  CAS  Google Scholar 

  5. Martuscelli M, Mastrocola D (2019) Biogenic amines: a claim for wines. In: Biog Amin IntechOpen. https://doi.org/10.5772/intechopen.80362

  6. Lester G (2000) Polyamines and their cellular anti-senescence properties in honey dew muskmelon fruit. Plant Sci 160:105–112. https://doi.org/10.1016/S0168-9452(00)00369-1

    Article  CAS  PubMed  Google Scholar 

  7. Toro-Funes N, Bosch-Fusté J, Veciana-Nogués MT, Izquierdo-Pulido M, Vidal-Carou MC (2013) In vitro antioxidant activity of dietary polyamines. Food Res Int 51:141–147. https://doi.org/10.1016/j.foodres.2012.11.036

    Article  CAS  Google Scholar 

  8. Velić D, Klarić DA, Velić N et al (2018) Chemical constituents of fruit wines as descriptors of their nutritional, sensorial and health-related properties. Descr Food Sci. https://doi.org/10.5772/intechopen.78796

  9. Ruiz-Capillas C, Herrero A (2019) Impact of biogenic amines on food quality and safety. Foods 8:62. https://doi.org/10.3390/foods8020062

    Article  CAS  PubMed Central  Google Scholar 

  10. Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006) Handbook of enology, vol 2: the chemistry of wine - stabilization and treatments, 2nd ed. https://doi.org/10.1002/0470010398

  11. Minussi RC, Rossi M, Bologna L et al (2003) Phenolic compounds and total antioxidant potential of commercial wines. Food Chem 82:409–416. https://doi.org/10.1016/S0308-8146(02)00590-3

    Article  CAS  Google Scholar 

  12. Lima GPP, da Rocha SA, Takaki M, Ramos PRR, Ono EO (2008) Comparison of polyamine, phenol and flavonoid contents in plants grown under conventional and organic methods. Int J Food Sci Technol 43:1838–1843. https://doi.org/10.1111/j.1365-2621.2008.01725.x

    Article  CAS  Google Scholar 

  13. Dadáková E, Křížek M, Pelikánová T (2009) Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC). Food Chem 116:365–370. https://doi.org/10.1016/j.foodchem.2009.02.018

    Article  CAS  Google Scholar 

  14. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  15. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  16. Costantini A, Vaudano E, Pulcini L, Carafa T, Garcia-Moruno E (2019) An overview on biogenic amines in wine. Beverages 5:19. https://doi.org/10.3390/beverages5010019

    Article  CAS  Google Scholar 

  17. Voigt J-P, Fink H (2015) Serotonin controlling feeding and satiety. Behav Brain Res 277:14–31. https://doi.org/10.1016/j.bbr.2014.08.065

    Article  CAS  PubMed  Google Scholar 

  18. Kanazawa K, Sakakibara H (2000) High content of dopamine, a strong antioxidant, in cavendish banana. J Agric Food Chem 48:844–848. https://doi.org/10.1021/jf9909860

    Article  CAS  PubMed  Google Scholar 

  19. Patil SA, Apine OA, Surwase SN, Jadhav JP (2013) Biological sources of L-DOPA: an alternative approach. Adv Park Dis 2:81–87. https://doi.org/10.4236/apd.2013.23016

    Article  CAS  Google Scholar 

  20. Nassur R d CMR, Pereira GE, Alves JA, Lima LC d O (2014) Chemical characteristics of grape juices from different cultivar and rootstock combinations. Pesqui Agropecuária Bras 49:540–545. https://doi.org/10.1590/S0100-204X2014000700006

    Article  Google Scholar 

  21. Natividade MMP, Corrêa LC, Souza SVC, Pereira GE, Lima LCO (2013) Simultaneous analysis of 25 phenolic compounds in grape juice for HPLC: method validation and characterization of São Francisco Valley samples. Microchem J 110:665–674. https://doi.org/10.1016/j.microc.2013.08.010

    Article  CAS  Google Scholar 

  22. Souza SC, Theodoro KH, Souza ER, Motta S, Glória MBA (2005) Bioactive amines in Brazilian wines: types, levels and correlation with physico-chemical parameters. Brazilian Arch Biol Technol 48:53–62. https://doi.org/10.1590/S1516-89132005000100009

    Article  CAS  Google Scholar 

  23. Agustini BC, de Lima DB, Bonfim TMB (2014) Composition of amino acids and bioactive amines in common wines of Brazil. Acta Sci Health Sci 36:225–233. https://doi.org/10.4025/actascihealthsci.v36i2.20187

    Article  CAS  Google Scholar 

  24. Bover-Cid S, Iquierdo-Pulido M, Mariné-Font A, Vidal-Carou C (2006) Biogenic mono-, di- and polyamine contents in Spanish wines and influence of a limited irrigation. Food Chem 96:43–47. https://doi.org/10.1016/j.foodchem.2005.01.054

    Article  CAS  Google Scholar 

  25. Konakovsky V, Focke M, Hoffmann-Sommergruber K et al (2011) Levels of histamine and other biogenic amines in high-quality red wines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:408–416. https://doi.org/10.1080/19440049.2010.551421

    Article  CAS  PubMed  Google Scholar 

  26. Hernández-Orte P, Lapeña AC, Peña-Gallego A et al (2008) Biogenic amine determination in wine fermented in oak barrels: factors affecting formation. Food Res Int 41:697–706. https://doi.org/10.1016/j.foodres.2008.05.002

    Article  CAS  Google Scholar 

  27. Ancín-Azpilicueta C, González-Marco A, Jiménez-Moreno N (2008) Current knowledge about the presence of amines in wine. Crit Rev Food Sci Nutr 48:257–275. https://doi.org/10.1080/10408390701289441

    Article  CAS  PubMed  Google Scholar 

  28. Rodriguez-Naranjo MI, Ordóñez JL, Callejón RM, Cantos-Villar E, Garcia-Parrilla MC (2013) Melatonin is formed during winemaking at safe levels of biogenic amines. Food Chem Toxicol 57:140–146. https://doi.org/10.1016/j.fct.2013.03.014

    Article  CAS  PubMed  Google Scholar 

  29. Del Prete V, Costantini A, Cecchini F et al (2009) Occurrence of biogenic amines in wine: the role of grapes. Food Chem 112:474–481. https://doi.org/10.1016/j.foodchem.2008.05.102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CNPq (National Council for Scientific and Technological Development, Brazil) (grant number 305177/2015-0 and 307571/2019-0) and São Paulo Research Foundation (FAPESP - Brazil) (grant 2016/22665-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Pace Pereira Lima.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Conflict of Interest

Authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, H.A.G., Marques, M.O.M., Borges, C.V. et al. Biogenic Amines and the Antioxidant Capacity of Juice and Wine from Brazilian Hybrid Grapevines. Plant Foods Hum Nutr 75, 258–264 (2020). https://doi.org/10.1007/s11130-020-00811-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-020-00811-5

Keywords

Navigation