Skip to main content
Log in

Contrasting effects of host crops and crop diversity on the abundance and parasitism of a specialist herbivore in agricultural landscapes

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Landscape complexity affects herbivores in agroecosystems, but consequences on pest control services are variable. Carryover effects of landscape composition in previous years on herbivore control may be important, but have been seldom assessed. Understanding landscape complexity effects at different temporal and spatial scales is important to improve sustainable pest control services.

Objectives

We examined the effect of agricultural landscape complexity (e.g., the percentage of semi-natural habitats) on cereal leaf beetle (CLB), Oulema melanopus L., and its parasitism by Tetrastichus julis (Walker).

Methods

From 2014 to 2015, we assessed CLB abundance and parasitism in 54 fields along a gradient of landscape complexity (2–70% of semi-natural habitats) in southern Alberta. We used generalized linear models to test the effects of percentage of crops and semi-natural habitats, and landscape and crop diversity on CLB abundance and parasitism at 0.5, 1, 1.5 and 2 km spatial scales.

Results

CLB abundance decreased with higher crop diversity at the 0.5 km scale and increased with CLB host crops in the current and previous years at multiple scales, supporting the resource concentration hypothesis. CLB parasitism increased with CLB abundance and in landscapes with increased canola and alfalfa during a year of low CLB abundance. CLB abundance had contrasting associations with semi-natural habitats: positive with woodlands and negative with pastures.

Conclusions

Our study suggests that crop diversity reduces the abundance of this specialist pest in agricultural landscapes likely by a dual effect of reducing host crop area and increasing habitats with resources for parasitoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ArcGIS E (2014) Release 10.3 Environmental Systems Research Institute. Redlands, CA

  • Awada L, Lindwall CW, Sonntag B (2014) The development and adoption of conservation tillage systems on the Canadian Prairies. Int Soil Water Conserv Res 2(1):47–65

    Article  Google Scholar 

  • Beduschi T, Tscharntke T, Scherber C (2015) Using multi-level generalized path analysis to understand herbivore and parasitoid dynamics in changing landscapes. Landsc Ecol 30(10):1975–1986

    Article  Google Scholar 

  • Berger JS, Birkhofer K, Hanson HI, Hedlund K (2018) Landscape configuration affects herbivore-parasitoid communities in oilseed rape. J Pest Sci 91(3):1093–1105

    Article  Google Scholar 

  • Bianchi F, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273(1595):1715–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boiteau G, Picka JD, Watmough J (2008) Potato field colonization by low-density populations of Colorado potato beetle as a function of crop rotation distance. J Econ Entomol 101(5):1575–1583

    Article  PubMed  Google Scholar 

  • Bosem Baillod A, Tscharntke T, Clough Y, Batáry P (2017) Landscape-scale interactions of spatial and temporal cropland heterogeneity drive biological control of cereal aphids. J Appl Ecol 54(6):1804–1813

    Article  Google Scholar 

  • Casagrande RA, Ruesink WG, Haynes DL (1977) The behavior and survival of adult cereal leaf beetles. Ann Entomol Soc Am 70(1):19–30

    Article  Google Scholar 

  • Chaplin-Kramer R, O'Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14(9):922–932

    Article  PubMed  Google Scholar 

  • Costamagna AC, Venables WN, Schellhorn NA (2015) Landscape-scale pest suppression is mediated by timing of predator arrival. Ecol Appl 25(4):1114–1130

    Article  PubMed  Google Scholar 

  • Crawley MJ (2013) The R book. Wiley, Hoboken, p 942

    Google Scholar 

  • Dosdall LM, Cárcamo H, Olfert O, Meers S, Hartley S, Gavloski J (2011) Insect invasions of agroecosystems in the western Canadian prairies: case histories, patterns, and implications for ecosystem function. Biol Invas 13(5):1135–1149

    Article  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65(1):169–175

    Article  Google Scholar 

  • Dysart RJ, Maltby HL, Brunson MH (1973) Larval parasites of Oulema melanopus in Europe and their colonization in the United States. Entomophaga 18(2):133–167

    Article  Google Scholar 

  • Evans EW, Anderson MR, Bowling PD (2010) Targeted sugar provision promotes parasitism of the cereal leaf beetle Oulema melanopus. Agric For Entomol 12(1):41–47

    Article  Google Scholar 

  • Evans EW, Bolshakova VLJ, Carlile NR (2015) Parasitoid dispersal and colonization lag in disturbed habitats: biological control of cereal leaf beetle metapopulations. J Appl Entomol 139(7):529–538

    Article  Google Scholar 

  • Evans EW, Karren JB, Israelsen CE (2006) Interactions over time between cereal leaf beetle (Coleoptera: Chrysomelidae) and larval parasitoid Tetrastichus julis (Hymenoptera: Eulophidae) in Utah. J Econ Entomol 99(6):1967–1973

    Article  PubMed  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14(2):101–112

    Article  PubMed  Google Scholar 

  • Fox J, Weisberg S (2018) An R companion to applied regression, 3rd edn. Sage Publications, Washington DC, p 576

    Google Scholar 

  • Grab H, Danforth B, Poveda K, Loeb G (2018) Landscape simplification reduces classical biological control and crop yield. Ecol Appl 28(2):348–355

    Article  PubMed  Google Scholar 

  • Gunton RM, Pöyry J, Mayhew P (2016) Scale-specific spatial density dependence in parasitoids: a multi-factor meta-analysis. Funct Ecol 30(9):1501–1510

    Article  Google Scholar 

  • Hawkins BA, Cornell HV (1994) Maximum parasitism rates and successful biological-control. Science 266(5192):1886–1886

    Article  CAS  PubMed  Google Scholar 

  • Hervet VAD, Cárcamo HA, Dosdall LM, Miller TD, Kher SV (2016) Assessment of potential non-target effects of Tetrastichus julis, a biological control agent of the cereal leaf beetle, Oulema melanopus. Biocontrol 61(4):399–411

    Article  Google Scholar 

  • Huseth AS, Frost KE, Knuteson DL, Wyman JA, Groves RL (2012) Effects of landscape composition and rotation distance on Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) abundance in cultivated potato. Environ Entomol 41(6):1553–1564

    Article  CAS  PubMed  Google Scholar 

  • Idris AB, Grafius E (1997) Nectar-collecting behavior of Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Plutellidae). Environ Entomol 26(1):114–120

    Article  Google Scholar 

  • Karp DS, Chaplin-Kramer R, Meehan TD, Martin EA, DeClerck F, Grab H, Gratton C et al (2018) Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc Natl Acad Sci 115(33):E7863–E7870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kheirodin A, Costamagna AC, Cárcamo HA (2019) Laboratory and field tests of predation on the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae). Biocontrol Sci Technol 29(5):451–465

    Article  Google Scholar 

  • Kheirodin A, Sharanowski BJ, Costamagna AC, Cárcamo HA (2020) Consumption of cereal leaf beetle, Oulema melanopus, by generalist predators in wheat fields detected by molecular analysis. Entomol Exp Appl 168(1):59–69

    Article  CAS  Google Scholar 

  • Kher S, Dosdall L, Cárcamo H (2011) The cereal leaf beetle: biology, distribution and prospects for control. Prairie Soils Crops 4:32–41

    Google Scholar 

  • Kher SV, Dosdall LM, Carcamo HA (2014) Plant vigor metrics determine spatio-temporal distribution dynamics of Oulema melanopus (Coleoptera: Chrysomelidae) and its larval parasitoid, Tetrastichus julis (Hymenoptera: Eulophidae). Environ Entomol 43(5):1295–1308

    Article  CAS  PubMed  Google Scholar 

  • Kher SV, Dosdall LM, Cárcamo HA (2016) Biology, host preferences and fitness of Oulema melanopus (Coleoptera: Chrysomelidae), a recent invasive pest in Western Canada. Arthropod-Plant Interact 10(5):365–376

    Article  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Luo Z (2019) Neighbouring crop diversity mediates the effect of Bt cotton on insect community and leaf damage in fields. Transgenic Res 28(3):357–367

    Article  CAS  PubMed  Google Scholar 

  • Lopes T, Hatt S, Xu Q, Chen J, Liu Y, Francis F (2016) Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control. Pest Manag Sci 72(12):2193–2202

    Article  CAS  PubMed  Google Scholar 

  • Maisonhaute J-E, Labrie G, Lucas E (2017) Direct and indirect effects of the spatial context on the natural biocontrol of an invasive crop pest. Biol Control 106:64–76

    Article  Google Scholar 

  • Mangiafico S (2017) R-companion: functions to support extension education program evaluation. R package version 1.5. 0. The Comprehensive R Archive Network

  • Mason PG, Broadbent AB, Whistlecraft JW, Gillespie DR (2011) Interpreting the host range of Peristenus digoneutis and Peristenus relictus (Hymenoptera: Braconidae) biological control agents of Lygus spp. (Hemiptera: Miridae) in North America. Biol Control 57(2):94–102

    Article  Google Scholar 

  • Meers S (2018) Alberta insect pest report. Minutes of the meeting of the Western Committee on Crop Pests. Lloydminster, Oct 2018

  • Menalled FD, Costamagna AC, Marino PC, Landis DA (2003) Temporal variation in the response of parasitoids to agricultural landscape structure. Agric Ecosyst Environ 96(1):29–35

    Article  Google Scholar 

  • Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2015) Vegan: community ecology package version 2.3–2. https://cran.r-project.org/web/packages/vegan/index.html

  • Philips CR, Herbert DA, Kuhar TP, Reisig DD, Thomason WE, Malone S (2011) Fifty years of cereal leaf beetle in the U. S: an update on its biology, management, and current research. J Integr Pest Manag 2(2):C1–C5

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2012) nlme: linear and nonlinear mixed effects models. R package version 3(0)

  • Pollier A, Tricault Y, Plantegenest M, Bischoff A (2019) Sowing of margin strips rich in floral resources improves herbivore control in adjacent crop fields. Agric For Entomol 21(1):119–129

    Article  Google Scholar 

  • Poveda K, Martínez E, Kersch-Becker MF, Bonilla MA, Tscharntke T (2012) Landscape simplification and altitude affect biodiversity, herbivory and Andean potato yield. J Appl Ecol 49(2):513–522

    Article  Google Scholar 

  • R Development Core Team R (2017) R: a language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing. https://www.R-project.org/

  • Rand TA, Waters DK, Blodgett SL, Knodel JJ, Harris MO (2014) Increased area of a highly suitable host crop increases herbivore pressure in intensified agricultural landscapes. Agric Ecosyst Environ 186:135–143

    Article  Google Scholar 

  • Redlich S, Martin EA, Steffan-Dewenter I (2018) Landscape-level crop diversity benefits biological pest control. J Appl Ecol 55(5):2419–2428

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43(1):223–225

    Article  PubMed  Google Scholar 

  • Riggi LG, Gagic V, Rusch A, Malsher G, Ekbom B, Bommarco R (2017) Pollen beetle mortality is increased by ground-dwelling generalist predators but not landscape complexity. Agric Ecosyst Environ 250:133–142

    Article  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod associations in simple and diverse habitats- fauna of Collards (Brassica-Oleracea). Ecol Monogr 43(1):95–120

    Article  Google Scholar 

  • Rusch A, Bommarco R, Jonsson M, Smith HG, Ekbom B (2013a) Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J Appl Ecol 50(2):345–354

    Article  Google Scholar 

  • Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, Thies C, Tscharntke T, Weisser WW, Winqvist C, Woltz M, Bommarco R (2016) Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric Ecosyst Environ 221:198–204

    Article  Google Scholar 

  • Rusch A, Valantin-Morison M, Sarthou JP, Roger-Estrade J (2011) Multi-scale effects of landscape complexity and crop management on pollen beetle parasitism rate. Landsc Ecol 26(4):473–486

    Article  Google Scholar 

  • Rusch A, Valantin-Morison M, Sarthou JP, Roger-Estrade J (2013b) Effect of crop management and landscape context on insect pest populations and crop damage. Agric Ecosyst Environ 166:118–125

    Article  Google Scholar 

  • Samaranayake KGLI, Costamagna AC (2018) Levels of predator movement between crop and neighboring habitats explain pest suppression in soybean across a gradient of agricultural landscape complexity. Agric Ecosyst Environ 259:135–146

    Article  Google Scholar 

  • Schneider G, Krauss J, Riedinger V, Holzschuh A, Steffan-Dewenter I (2015) Biological pest control and yields depend on spatial and temporal crop cover dynamics. J Appl Ecol 52(5):1283–1292

    Article  Google Scholar 

  • Sheng J, Gao F, Andile M, Wang L, Sandhu HS, Ouyang F, Zhao Z (2017) Crop diversity and land simplification effects on pest damage in Northern China. Ann Entomol Soc Am 110(1):91–96

    Article  Google Scholar 

  • Stiling PD (1987) The frequency of density dependence in insect host-parasitoid systems. Ecology 68(4):844–856

    Article  Google Scholar 

  • Thies C, Steffan-Dewenter I, Tscharntke T (2003) Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101(1):18–25

    Article  Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, Nouhuys SV, Vidal V (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43(3):294–309

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Peter B, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fruend J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—Eight hypotheses. Biol Rev 87(3):661–685

    Article  PubMed  Google Scholar 

  • Tschumi M, Albrecht M, Entling MH, Jacot K (2015) High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proc R Soc Lond [Biol] 282(1814):20151369

    Article  Google Scholar 

  • Uddin M (2005) Insects of alfalfa in Manitoba with particular reference to Lygus spp., Adelphocoris lineolatus (Hemiptera: Miridae) and Acyrthosiphon pisum (Homoptera: Aphididae) and their natural enemies. Ph.D. thesis. University of Manitoba, Winnipeg, Manitoba, Canada

  • Venables WN, Ripley BD (2003) Modern applied statistics with S-PLUS, 4th edn. Springer, New York, p 562

    Google Scholar 

  • Veres A, Petit S, Conord C, Lavigne C (2013) Does landscape composition affect pest abundance and their control by natural enemies? A review. Agric Ecosyst Environ 166:110–117

    Article  Google Scholar 

  • Zaller JG, Moser D, Drapela T, Schmoger C, Frank T (2009) Parasitism of stem weevils and pollen beetles in winter oilseed rape is differentially affected by crop management and landscape characteristics. Biocontrol 54(4):505–514

    Article  Google Scholar 

  • Zaller JG, Moser D, Drapela T, Schmöger C, Frank T (2008) Insect pests in winter oilseed rape affected by field and landscape characteristics. Basic Appl Ecol 9(6):682–690

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dave Holder, Cheryl Chelle, Sheree Daniels, Jennifer Liddle, Marko Mikovich, Michaela Schmitke, Pawel Wityk, Crystal Almdal, Corey Blad, and Liane Carter for technical support. We thank Jordan Bannerman, Aldo Ríos Martínez, Zach Polk, Barb Sharanowski, Rob Currie, and Cynthia Scott-Dupree for providing feedback on previous manuscript drafts. We also thank Jordan Bannerman and Ishan Samaranayake for statistical assistance, and the University of Manitoba for providing scholarship support to the senior author.

Funding

This work was supported by the Pesticide Risk Reduction Program of AAFC’s Pest Management Centre (Projects PRR13-020 & PRR16-020), and the Natural Sciences and Engineering Research Council Discovery Grant Program (Project 418678-2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Kheirodin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2854 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheirodin, A., Cárcamo, H.A. & Costamagna, A.C. Contrasting effects of host crops and crop diversity on the abundance and parasitism of a specialist herbivore in agricultural landscapes. Landscape Ecol 35, 1073–1087 (2020). https://doi.org/10.1007/s10980-020-01000-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-01000-0

Keywords

Navigation