Skip to main content
Log in

Optical and Electrical Properties of Multilayer Grid Electrodes for Highly Durable Transparent Conductive Electrodes

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

We report on the optical and electrical properties of MgZnO/Ag/MgZnO (MAM) grid electrodes grown at room temperature; these are proposed as an alternative to metal-based grid electrodes to meet the requirement for high stability in a harsh environment. The optical transmittance of Ag grid electrodes improved when the Ag grid layer was embedded in an MgZnO grid layer regardless of the fill factor. This improvement depends critically on the Ag grid layer thickness in the MAM grid electrodes. The Haack figure of merit for a MAM grid electrode with a 20 nm-thick Ag grid layer was approximately threefold higher than that of an Ag grid electrode. The electrode has an average transmittance of 85.8% at wavelengths range from 400 to 1100 nm and a sheet resistance of 26.9 Ω/sq. These results indicate that MAM grid electrodes can be an alternative to metal-based grid electrodes in optoelectronic devices that require stable wideband operation in a harsh environment and over a wide wavelength region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

R :

Sheet resistance

G :

Spacing size between grid lines

W :

Width of grid metal lines

T :

Transmittance

τ :

Correction factor

References

  1. Morales-Masis, M., De Wolf, S., Woods-Robinson, R., Ager, J. W., & Ballif, C. (2017). Transparent electrodes for efficient optoelectronics. Advanced Electronic Materials, 3(1600529), 1–17.

    Google Scholar 

  2. Ellmer, K. (2012). Past achievements and future challenges in the development of optically transparent electrodes. Nature Photonics, 6(809), 809–817.

    Article  Google Scholar 

  3. Lee, S. H., Kim, S. W., Park, C. W., Jeong, H. E., Ok, J. G., & Kwak, M. K. (2017). Scalable fabrication of flexible transparent heaters comprising continuously created metallic micromesh patterns incorporated with biomimetic anti-reflection layers. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 177–181.

    Article  Google Scholar 

  4. Ye, S., Rathmell, A. R., Chen, Z., Stewart, I. E., & Wiley, B. J. (2014). Metal nanowire networks: The next generation of transparent conductors. Advanced Materials, 26, 6670–6687.

    Article  Google Scholar 

  5. Lee, H. J., Oh, S., Cho, K. Y., Jeong, W. L., Lee, D. S., & Park, S. J. (2018). Spontaneous and selective nanowelding of silver nanowires by electrochemical ostwald ripening and high electrostatic potential at the junctions for high-performance stretchable transparent. ACS Applied Materials and Interfaces, 10, 14124–14131.

    Article  Google Scholar 

  6. Park, J., & Hwang, J. (2014). Fabrication of a flexible Ag-grid transparent electrode using ac based electrohydrodynamic jet printing. Journal of Physics. D. Applied Physics, 47(405102), 1–7.

    Google Scholar 

  7. Park, J. H., Lee, D. Y., Kim, Y. H., Kim, J. K., Lee, J. H., Park, J. H., et al. (2014). Flexible and transparent metallic grid electrodes prepared by evaporative assembly. ACS Applied Materials and Interfaces, 6, 12380–12387.

    Article  Google Scholar 

  8. Jang, Y., Kim, J., & Byun, D. (2013). Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EDH) jet printing. Journal of Physics D. Applied Physics, 46(155103), 1–5.

    Google Scholar 

  9. Hong, S., Yeo, J., Kim, G., Kim, D., Lee, H., Kwon, J., et al. (2013). Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano, 7(6), 5024–5031.

    Article  Google Scholar 

  10. Li, T. C., & Chang, R. C. (2014). Improving the performance of ITO thin films by coating PEDOT:PSS. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 3329–3334.

    Article  Google Scholar 

  11. Son, J. M., Lee, C., Hong, S. K., Kang, J. J., & Cho, Y. H. (2017). Fast thermal response of silicon nanowire-heater for heat shock generation. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(1), 42–45.

    Article  Google Scholar 

  12. Rathmell, A. R., Nguyen, M., Chi, M., & Wiley, B. J. (2012). Synthesis of oxidation-resist cupronickel nanowires for transparent conducting nanowire networks. Nano Letters, 12, 3193–3199.

    Article  Google Scholar 

  13. Im, H. G., Jin, J., Ko, J. H., Lee, J., Lee, J. Y., & Bae, B. S. (2014). Flexible transparent conducting composite films using a monolithically embedded AgNW electrode with robust performance stability. Nanoscale, 6, 711–715.

    Article  Google Scholar 

  14. Sharma, V., Kumar, P., Kumar, A., Surbhi, A. K., & Sachdev, K. (2017). High-performance radiation stable ZnO/Ag/ZnO multilayer transparent conductive electrode. Solar Energy Materials and Solar Cells, 169, 122–131.

    Article  Google Scholar 

  15. Maniyara, R. A., Mkhitaryan, V. K., Chen, T. L., Ghosh, D. S., & Pruneri, V. (2016). An antireflection transparent conductor with ultralow optical loss (< 2%) and electrical resistance (< 6 Ωsq−1). Nature Communications, 7(13771), 1–8.

    Google Scholar 

  16. Ren, N., Zhu, J., & Ban, S. (2017). Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature. AIP Advances, 7, 1–7.

    Google Scholar 

  17. Wang, C. T., Ting, C. C., Kao, P. C., Li, S. R., & Chu, S. Y. (2016). Improvement of optical and electrical characteristics of MoO3/Ag film/MoO3 flexible transparent electrode with metallic grid. Journal of Applied Physics, 120, 1–7.

    Article  Google Scholar 

  18. Lee, H. J., Kang, J. W., Hong, S. H., Song, S. H., & Park, S. J. (2016). MgxZn1-xO/Ag/MgxZn1-xO multilayers as high-performance. ACS Applied Materials & Interfaces, 8, 1565–1570.

    Article  Google Scholar 

  19. Guillén, C., & Herrero, J. (2011). TCO/meta/TCO structures for energy and flexible electronics. Thin Solid Films, 520, 1–17.

    Article  Google Scholar 

  20. Kim, H. J., Lee, S. H., Lee, J., Lee, E. S., Choi, J. H., Jung, J. H., et al. (2014). High-durable AgNi nanomesh film for a transparent conducting electrode. Small (Weinheim an der Bergstrasse, Germany), 10(18), 3767–3774.

    Article  Google Scholar 

  21. Kim, D. J., Kim, H. J., Seo, K. W., Kim, K. H., Kim, T. W., & Kim, H. K. (2015). Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels. Scientific Reports, 5(16838), 1–10.

    Google Scholar 

  22. Han, H., Theodore, N. D., & Alford, T. L. (2008). Improved conductivity and mechanism of carrier transport in zin oxide with embedded silver layer. Journal of Applied Physics, 103, 1–8.

    Google Scholar 

  23. Zhang, D., Wang, P., Murakami, R., & Song, X. (2010). Effect of an interface charge density wave on surface plasmon in ZnO/Ag/ZnO thin films. Applied Physics Letters, 96, 1–3.

    Google Scholar 

  24. Chin, H. A., Cheng, I. C., Huang, C. I., Wu, Y. R., Lu, W. S., Lee, W. L., et al. (2010). Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by rf-sputtering process. Journal of Applied Physics, 108, 1–4.

    Article  Google Scholar 

  25. Chi, C. T., Cheng, I. C., & Chen, J. Z. (2012). Bandgap tuning of MgZnO in flexible transparent n + -ZnO:al/n-MgZnO/p-CuAlOx: Ca diodes on polyethylene terephthalate substrates. Journal of Alloys and Compounds, 544, 111–114.

    Article  Google Scholar 

  26. Ghosh, D. S., Chen, T. L., & Pruneri, V. (2010). High figure-or-merit ultrathin metal transparent electrodes incorporating a conductive grid. Applied Physics Letters, 96, 1–3.

    Google Scholar 

  27. Haacke, G. (1976). New figure of merit for transparent conductors. Journal of Applied Physics, 47(9), 4086–4089.

    Article  Google Scholar 

  28. Liu, W. S., Liu, Y. H., Chen, W. K., & Hsueh, K. P. (2013). Transparent Conductive Ga-doped MgZnO/Ag/Ga-doped MgZnO sandwich structure with improved conductivity and transmittance. Journal of Alloys and Compounds, 564, 105–113.

    Article  Google Scholar 

  29. Sahu, D. R., Lin, S. Y., & Huang, J. L. (2008). Investigation of conductive and transparent Al-doped ZnO/Ag/Al-doped ZnO multilayer coatings by electron beam evaporation. Thin Solid Films, 516, 4728–4732.

    Article  Google Scholar 

  30. Chen, Z. Y., Liang, D., Ma, G., Frankel, G. S., Allen, H. C., & Kelly, R. G. (2013). Influence of UV irradiation and ozone on atmospheric corrosion of bare silver. Corrosion Engineering, Science and Technology, 45(2), 169–180.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2019-2018-0-01426) supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation), and by Human Resources Program in the Transportation Specialized Lighting Core Technology Development (No. N0001364) and by the Technology Innovation Program (20002694, Gas sensor) Granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Kook Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HJ., Cho, KY., Oh, S. et al. Optical and Electrical Properties of Multilayer Grid Electrodes for Highly Durable Transparent Conductive Electrodes. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 501–508 (2021). https://doi.org/10.1007/s40684-020-00205-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00205-7

Keywords

Navigation