Skip to main content
Log in

Lipid Induction in Scenedesmus abundans GH-D11 by Reusing the Volatile Fatty Acids in the Effluent of Dark Anaerobic Fermentation of Biohydrogen

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study aims to investigate the efficacy of lipid induction in Scenedesmus abundans by adding the effluent from dark fermentation of biohydrogen production. Four sets of experiments were conducted: control (sufficient nitrogen), nitrogen depletion, low concentration (0.3×) effluent addition, and high concentration (0.5×) effluent addition. The addition of low concentration effluent produced the highest biomass and lipid yields of 2.831 g/L and 1.238 g/L, corresponding to a lipid abundance of 43.72 wt%. Furthermore, S. abundans had high removal efficiencies for volatile fatty acids in the effluent (formic acid 100%, acetic acid 100%, propionic acid 98%, lactic acid 84%, and butyric acid 68%), and this is the first study demonstrating the ability of S. abundans in using formic acid and lactic acid to produce biomass and lipids. These results show that S. abundans have great abilities in simultaneous reducing organic acids in the effluent and producing valuable metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zeng, X., Danquah, M. K., Zhang, S., Zhang, X., Wu, M., Chen, X. D., Ng, I.-S., Jing, K., & Lu, Y. (2012). Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chemical Engineering Journal, 183, 192–197.

    Article  CAS  Google Scholar 

  2. Perez-Garcia, O., Escalante, F. M., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11–36.

    Article  CAS  PubMed  Google Scholar 

  3. Santos, C., Ferreira, M., Da Silva, T. L., Gouveia, L., Novais, J., & Reis, A. (2011). A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: Taking advantage of complementary nutritional modes. Journal of Industrial Microbiology & Biotechnology, 38(8), 909–917.

    Article  CAS  Google Scholar 

  4. Gong, H., Tang, Y., Wang, J., Wen, X., Zhang, L., & Lu, C. (2008). Characterization of photosystem II in salt-stressed cyanobacterial Spirulina platensis cells. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1777(6), 488–495.

    Article  CAS  Google Scholar 

  5. Xia, L., Rong, J., Yang, H., He, Q., Zhang, D., & Hu, C. (2014). NaCl as an effective inducer for lipid accumulation in freshwater microalgae Desmodesmus abundans. Bioresource Technology, 161, 402–409.

    Article  CAS  PubMed  Google Scholar 

  6. Asulabh, K., G. Supriya, and T. Ramachandra. (2012). Effect of salinity concentrations on growth rate and lipid concentration in Microcystis sp., Chlorococcum sp. and Chaetoceros sp. National Conference on Conservation and Management of Wetland Ecosystems. School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala.

  7. Mujtaba, G., Choi, W., Lee, C.-G., & Lee, K. (2012). Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technology, 123, 279–283.

    Article  CAS  PubMed  Google Scholar 

  8. Adams, C., Godfrey, V., Wahlen, B., Seefeldt, L., & Bugbee, B. (2013). Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresource Technology, 131, 188–194.

    Article  CAS  PubMed  Google Scholar 

  9. Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84(2), 281–291.

    Article  CAS  PubMed  Google Scholar 

  10. Sato, A., Matsumura, R., Hoshino, N., Tsuzuki, M., & Sato, N. (2014). Responsibility of regulatory gene expression and repressed protein synthesis for triacylglycerol accumulation on sulfur-starvation in Chlamydomonas reinhardtii. Frontiers in Plant Science, 5, 444.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moon, M., Kim, C. W., Park, W.-K., Yoo, G., Choi, Y.-E., & Yang, J.-W. (2013). Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Research, 2(4), 352–357.

    Article  Google Scholar 

  12. Fei, Q., Fu, R., Shang, L., Brigham, C. J., & Chang, H. N. (2015). Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Bioprocess and Biosystems Engineering, 38(4), 691–700.

    Article  CAS  PubMed  Google Scholar 

  13. Kaparaju, P., Serrano, M., Thomsen, A. B., Kongjan, P., & Angelidaki, I. (2009). Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology, 100(9), 2562–2568.

    Article  CAS  PubMed  Google Scholar 

  14. Pierra, M., Trably, E., Godon, J.-J., & Bernet, N. (2014). Fermentative hydrogen production under moderate halophilic conditions. International Journal of Hydrogen Energy, 39(14), 7508–7517.

    Article  CAS  Google Scholar 

  15. Batista, A. P., Moura, P., Marques, P. A., Ortigueira, J., Alves, L., & Gouveia, L. (2014). Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel, 117, 537–543.

    Article  CAS  Google Scholar 

  16. Lo, Y.-C., Chen, W.-M., Hung, C.-H., Chen, S.-D., & Chang, J.-S. (2008). Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feasibility and kinetic studies. Water Research, 42(4–5), 827–842.

    Article  CAS  PubMed  Google Scholar 

  17. Yokoi, H., Mori, S., Hirose, J., Hayashi, S., & Takasaki, Y. (1998). H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M [h] 19. Biotechnology Letters, 20(9), 895–899.

    Article  CAS  Google Scholar 

  18. Ren, H.-Y., Liu, B.-F., Kong, F., Zhao, L., Xing, D., & Ren, N.-Q. (2014). Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation. Bioresource Technology, 157, 355–359.

    Article  CAS  PubMed  Google Scholar 

  19. Abdel-Raouf, N., Al-Homaidan, A., & Ibraheem, I. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar, G., Ponnusamy, V. K., Bhosale, R. R., Shobana, S., Yoon, J.-J., Bhatia, S. K., Banu, J. R., & Kim, S.-H. (2019). A review on the conversion of volatile fatty acids to polyhydroxyalkonates using dark fermentative effluents from hydrogen production. Bioresource Technology, 121427.

  21. Longo, S., Katsou, E., Malamis, S., Frison, N., Renzi, D., & Fatone, F. (2015). Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants. Bioresource Technology, 175, 436–444.

    Article  CAS  PubMed  Google Scholar 

  22. Ryu, B.-G., Kim, K., Kim, J., Han, J.-I., & Yang, J.-W. (2013). Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Bioresource Technology, 129, 351–359.

    Article  CAS  PubMed  Google Scholar 

  23. Yang, L., Tan, X., Li, D., Chu, H., Zhou, X., Zhang, Y., & Yu, H. (2015). Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater. Bioresource Technology, 181, 54–61.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, C.-H., Chang, C.-Y., Liao, Q., Zhu, X., & Chang, J.-S. (2013). Photoheterotrophic growth of Chlorella vulgaris ESP6 on organic acids from dark hydrogen fermentation effluents. Bioresource Technology, 145, 331–336.

    Article  CAS  PubMed  Google Scholar 

  25. Turon, V., Trably, E., Fouilland, E., & Steyer, J.-P. (2016). Potentialities of dark fermentation effluents as substrates for microalgae growth: A review. Process Biochemistry, 51(11), 1843–1854.

    Article  CAS  Google Scholar 

  26. Gonçalves, A. L., Pires, J. C., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403–415.

    Article  Google Scholar 

  27. Mohan, S. V., & Devi, M. P. (2012). Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment. Bioresource Technology, 123, 627–635.

    Article  CAS  Google Scholar 

  28. Yeh, K. L., & Chang, J. S. (2011). Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: Implications for biofuels. Biotechnology Journal, 6(11), 1358–1366.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, C.-Y., Ho, S.-H., Liu, C.-C., & Chang, J.-S. (2017). Enhancing lutein production with Chlorella sorokiniana Mb-1 by optimizing acetate and nitrate concentrations under mixotrophic growth. Journal of the Taiwan Institute of Chemical Engineers, 79, 88–96.

    Article  CAS  Google Scholar 

  30. Ho, S.-H., Nakanishi, A., Kato, Y., Yamasaki, H., Chang, J.-S., Misawa, N., Hirose, Y., Minagawa, J., Hasunuma, T., & Kondo, A. (2017). Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Scientific Reports, 7, 45471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Griffiths, M. J., Garcin, C., van Hille, R. P., & Harrison, S. T. (2011). Interference by pigment in the estimation of microalgal biomass concentration by optical density. Journal of Microbiological Methods, 85(2), 119–123.

    Article  CAS  PubMed  Google Scholar 

  32. Axelsson, M., & Gentili, F. (2014). A single-step method for rapid extraction of total lipids from green microalgae. PLoS One, 9(2), e89643.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Turpin, D. H. (1991). Effects of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of Phycology, 27(1), 14–20.

    Article  CAS  Google Scholar 

  34. Pan, Y.-Y., Wang, S.-T., Chuang, L.-T., Chang, Y.-W., & Chen, C.-N. N. (2011). Isolation of thermo-tolerant and high lipid content green microalgae: Oil accumulation is predominantly controlled by photosystem efficiency during stress treatments in Desmodesmus. Bioresource Technology, 102(22), 10510–10517.

    Article  CAS  PubMed  Google Scholar 

  35. Klok, A. J., Verbaanderd, J. A., Lamers, P. P., Martens, D. E., Rinzema, A., & Wijffels, R. H. (2013). A model for customising biomass composition in continuous microalgae production. Bioresource Technology, 146, 89–100.

    Article  CAS  PubMed  Google Scholar 

  36. Li, X., Přibyl, P., Bišová, K., Kawano, S., Cepák, V., Zachleder, V., Čížková, M., Brányiková, I., & Vítová, M. (2013). The microalga Parachlorella kessleri––A novel highly efficient lipid producer. Biotechnology and Bioengineering, 110(1), 97–107.

    Article  CAS  PubMed  Google Scholar 

  37. Lamers, P. P., Janssen, M., De Vos, R. C., Bino, R. J., & Wijffels, R. H. (2012). Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. Journal of Biotechnology, 162(1), 21–27.

    Article  CAS  PubMed  Google Scholar 

  38. Bonnefond, H., Moelants, N., Talec, A., Mayzaud, P., Bernard, O., & Sciandra, A. (2017). Coupling and uncoupling of triglyceride and beta-carotene production by Dunaliella salina under nitrogen limitation and starvation. Biotechnology for Biofuels, 10(1), 25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Moussa, I. D.-B., Chtourou, H., Karray, F., Sayadi, S., & Dhouib, A. (2017). Nitrogen or phosphorus repletion strategies for enhancing lipid or carotenoid production from Tetraselmis marina. Bioresource Technology, 238, 325–332.

    Article  CAS  Google Scholar 

  40. Goiris, K., Van Colen, W., Wilches, I., León-Tamariz, F., De Cooman, L., & Muylaert, K. (2015). Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Research, 7, 51–57.

    Article  Google Scholar 

  41. Turon, V., Trably, E., Fayet, A., Fouilland, E., & Steyer, J. P. (2015). Raw dark fermentation effluent to support heterotrophic microalgae growth: Microalgae successfully outcompete bacteria for acetate. Algal Research, 12, 119–125.

    Article  Google Scholar 

  42. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. The Plant Journal, 54(4), 621–639.

    Article  CAS  PubMed  Google Scholar 

  43. Boyle, N. R., & Morgan, J. A. (2009). Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Systems Biology, 3(1), 4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Musa, M., Doshi, A., Brown, R., & Rainey, T. J. (2019). Microalgae dewatering for biofuels: A comparative techno-economic assessment using single and two-stage technologies. Journal of Cleaner Production, 229, 325–336.

    Article  Google Scholar 

  45. Chellamboli, C., & Perumalsamy, M. (2014). Application of response surface methodology for optimization of growth and lipids in Scenedesmus abundans using batch culture system. RSC Advances, 4(42), 22129–22140.

    Article  CAS  Google Scholar 

  46. Mandotra, S., Kumar, P., Suseela, M., & Ramteke, P. (2014). Fresh water green microalga Scenedesmus abundans: A potential feedstock for high quality biodiesel production. Bioresource Technology, 156, 42–47.

    Article  CAS  PubMed  Google Scholar 

  47. Ren, H.-Y., Liu, B.-F., Ma, C., Zhao, L., & Ren, N.-Q. (2013). A new lipid-rich microalga Scenedesmussp. strain R-16 isolated using Nile red staining: Effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnology for Biofuels, 6(1), 143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Girard, J.-M., Roy, M.-L., Hafsa, M. B., Gagnon, J., Faucheux, N., Heitz, M., Tremblay, R., & Deschênes, J.-S. (2014). Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algal Research, 5, 241–248.

    Article  Google Scholar 

  49. Chang, H.-X., Fu, Q., Huang, Y., Xia, A., Liao, Q., Zhu, X., Zheng, Y.-P., & Sun, C.-H. (2016). An annular photobioreactor with ion-exchange-membrane for non-touch microalgae cultivation with wastewater. Bioresource Technology, 219, 668–676.

    Article  CAS  PubMed  Google Scholar 

  50. González-Garcinuño, Á., Tabernero, A., Sánchez-Álvarez, J. M., del Valle, E. M. M., & Galán, M. A. (2014). Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea. Bioresource Technology, 173, 334–341.

    Article  PubMed  CAS  Google Scholar 

  51. Moreno, R., Aita, G. M., Madsen, L., Gutierrez, D. L., Yao, S., Hurlburt, B., & Brashear, S. (2013). Identification of naturally isolated southern Louisiana's algal strains and the effect of higher CO2 content on fatty acid profiles for biodiesel production. Journal of Chemical Technology & Biotechnology, 88(5), 948–957.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude toward Professor Jo-Shu Chang in the Department of Chemical Engineering, National Cheng Kung University, Taiwan, for providing the hydrogen-producing bacteria and Scenedesmus abundans GH-D11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiang-Yu Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The presenting author of this manuscript in ACB2019 is Yu-Sheng Lin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YS., Yuwono, W. & Wang, HY. Lipid Induction in Scenedesmus abundans GH-D11 by Reusing the Volatile Fatty Acids in the Effluent of Dark Anaerobic Fermentation of Biohydrogen. Appl Biochem Biotechnol 191, 258–272 (2020). https://doi.org/10.1007/s12010-020-03294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03294-x

Keywords

Navigation