Skip to main content
Log in

Seasonality of Hg dynamics in the Ebrié Lagoon (Côte d’Ivoire) ecosystem: influence of biogeochemical factors

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study addresses the different biogeochemical parameters that control the dynamics of Hg, which is a less-studied metal in the Ebrié Lagoon. During two hydrological seasons, the dry season and the rainy season, we regularly sampled and analysed various compartments (e.g. sediments and fishes (Tilapia sp.)) of the lagoon. Thus, the physicochemical parameters were measured in situ (e.g. temperature, pH, salinity, redox potential and dissolved oxygen, total dissolved organic carbon, nitrates and sulphates), and the microbiological parameters (e.g. cultivable cells, total enzymatic activity and catabolic activity) were measured to establish the seasonal variations in the links between Hg and biogeochemical parameters through multivariate statistical analyses. The bioavailability of Hg from an unpolluted site was studied by comparing the ratios of fish and sediment. The results indicated that the seasons influenced the different biogeochemical factors, although for some factors, the variations were not significant. This influence was more pronounced in the dry season than in the rainy season. The impact of microbial activities and organic matter on Hg dynamics was observed in all seasons. However, other factors, such as pH, temperature, salinity, Eh and sulphates, influenced the dynamics of Hg only in the dry season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Baki A, Dkhil M, Al-Quraishy S (2013) Bioaccumulation of some heavy metals in tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah, Saudi Arabia. Afr J Biotechnol 10:2541–2547. https://doi.org/10.5897/AJB10.1772

    Article  Google Scholar 

  • Addo MA, Okley GM, Affum HA, Acquah S, Gbadago JK (2011) Water quality and level of some heavy metals in water and sediments of Kpeshie Lagoon, La-Accra, Ghana. Res J Environ Earth Sci 3:487–497

    CAS  Google Scholar 

  • Aguilar-Betancourt CM, González-Sansón G, Kidd KA, Munkittrick KR, Curry RA, Kosonoy-Aceves D, Lucano-Ramírez G, Ruiz-Ramírez S, Flores-Ortega JR (2016) Fishes as indicators of untreated sewage contamination in a Mexican coastal lagoon. Mar Pollut Bull 113:100–109. https://doi.org/10.1016/j.marpolbul.2016.08.073

    Article  CAS  Google Scholar 

  • Aka AM, Wognin AV, Irie BTJ, Coulibaly AS, Monde S, Aka K (2016) Seasonal fluctuations of the content of metals (Ni, Cu, Zn and Cd) from the sediments of the estuarine bays of the Ebrié lagoon in Côte d’Ivoire. J Chem Biol Phys Sci 6:970–981

    Google Scholar 

  • Aka AM, Wognin AV, Amani EM, Irie BTG, Coulibaly AS, Monde S (2017) Analyse des Parametres Physico-Chimiques et Bacteriologiques des Eaux de L’estuaire de la Lagune Ebrie (Sud-Est de la Cote D’ivoire). Eur J Sci Res 147:301–314

    Google Scholar 

  • Baralkiewicz D, Gramowska H, Gołdyn R (2006) Distribution of total mercury and methyl mercury in water, sediment and fish from Swarze¸dzkie lake. Chem Ecol 22:59–64

    Article  CAS  Google Scholar 

  • Bisinoti MC, Sargentini E, Jardim WF (2007) Seasonal behavior of mercury species in waters and sediments from the Negro River Basin, Amazon, Brazil. J Braz Chem Soc 18:544–553

    Article  CAS  Google Scholar 

  • Borch T, Kretzschmar R, Skappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44:15–23. https://doi.org/10.1021/es9026248

    Article  CAS  Google Scholar 

  • Brenon I, Audouin O, Pouvreau N, Maurin J-C (2009) Impact of vertical structure on water mass circulation in a tropical lagoon (Ebrié, Ivory Coast). J Afr Earth Sci 55:47–51. https://doi.org/10.1016/j.jafrearsci.2008.12.005

    Article  CAS  Google Scholar 

  • Bridou R, Monperrus M, Gonzalez PR, Guyoneaud R, Amouroux D (2011) Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers. Environ Toxicol Chem 30:337–344. https://doi.org/10.1002/etc.395

    Article  CAS  Google Scholar 

  • Brown LE, Chen CY, Voytek MA, Amirbahman A (2015) The effect of sediment mixing on mercury dynamics in two intertidal mudflats at Great Bay Estuary, New Hampshire, USA. Mar Chem 177:731–741. https://doi.org/10.1016/j.marchem.2015.10.011

    Article  CAS  Google Scholar 

  • Bryant LD, Little JC, Bürgmann H (2012) Response of sediment microbial community structure in a freshwater reservoir to manipulations in oxygen availability. FEMS Microbiol Ecol 80:248–263. https://doi.org/10.1111/j.1574-6941.2011.01290.x

    Article  CAS  Google Scholar 

  • Calamari D, Naeve H (1994) Revue de la pollution dans l’environnement aquatique africain. Document Technique du CPCA. Rome

  • Cardoso PG, Pereira E, Duarte AC, Azeiteiro UM (2014) Temporal characterization of mercury accumulation at different trophic levels and implications for metal biomagnification along a coastal food web. Mar Pollut Bull 87:39–47. https://doi.org/10.1016/j.marpolbul.2014.08.013

    Article  CAS  Google Scholar 

  • Celo V, Lean DRS, Scott SL (2006) Abiotic methylation of mercury in the aquatic environment. Sci Total Environ 368:126–137. https://doi.org/10.1016/j.scitotenv.2005.09.043

    Article  CAS  Google Scholar 

  • Choi H, Jeong E, Nguyen VH, Hanh DVB, Dan NP, Shin KH, Han S (2019) Characteristics of sediment affecting monomethylmercury accumulation in benthic fish of the Mekong Delta. Environ Toxicol Chem 38:503–510. https://doi.org/10.1002/etc.4327

    Article  CAS  Google Scholar 

  • Ci Z, Zhang X, Yin Y, Chen J, Wang S (2016) Mercury redox chemistry in waters of the eastern Asian seas: from polluted coast to clean open ocean. Environ Sci Technol 50:2371–2380. https://doi.org/10.1021/acs.est.5b05372

    Article  CAS  Google Scholar 

  • Cossa D, Laurier F, Ficht A (2002) Mercury contamination in the Seine estuary. In: Biogeochemistry of Environmentally Important Trace Elements. ACS Symposium Series, Washington, D.C, pp 298–320

  • Costa M, Liss PS (1999) Photoreduction of mercury in sea water and its possible implications for Hg0 air-sea fluxes. Mar Chem 68:87–95. https://doi.org/10.1016/S0304-4203(99)00067-5

    Article  CAS  Google Scholar 

  • Costa MF, Landing WM, Kehrig HA, Barletta M, Holmes CD, Barrocas PRG, Evers DC, Buck DG, Claudia Vasconcellos A, Hacon SS, Moreira JC, Malm O (2012) Mercury in tropical and subtropical coastal environments. Environ Res 119:88–100. https://doi.org/10.1016/j.envres.2012.07.008

    Article  CAS  Google Scholar 

  • Costley CT, Mossop KF, Dean JR, Garden LM, Marshall J, Carroll J (2000) Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation. Anal Chim Acta 405:179–183. https://doi.org/10.1016/S0003-2670(99)00742-4

    Article  CAS  Google Scholar 

  • Coulibaly A, Monde S, Wognin V, Aka K (2009) Analyse des éléments traces métalliques (ETM) dans les baies estuariennes d’Abidjan en Côte d’Ivoire. Afrique Sci 5:77–96

    Google Scholar 

  • Coulibaly S, Atse BC, Koffi KM, Sylla S, Konan KJ, Kouassi NJ (2012) Seasonal accumulations of some heavy metal in water, sediment and tissues of black-chinned tilapia Sarotherodon melanotheron from biétri bay in ebrié lagoon, ivory coast. Bull Environ Contam Toxicol 88:571–576. https://doi.org/10.1007/s00128-012-0522-1

    Article  CAS  Google Scholar 

  • de Oliveira DCM, Correia RRS, Marinho CC, Guimarães JRD (2015) Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities. Chemosphere 127:214–221. https://doi.org/10.1016/j.chemosphere.2015.02.009

    Article  CAS  Google Scholar 

  • Durand J, Guiral D (1994) Hydroclimat et Hydrochimie In Environnement et Ressources aquatiques de Cote d’Ivoire, Tome II, in: Milieux Lagunaires. ORSTOM, pp 59–90

  • FAO (2004) SITUATION MONDIALE DES PÊCHES ET DE L’AQUACULTURE 2004, FAO. https://doi.org/10.1017/CBO9781107415324.004

  • Fiston BK (2017) Etude sur l’utilisation du mercure et du cyanure dans l’exploitation artisanale de l’or au Nord et Sud-Kivu, IPIS. ed

  • Fitzgerald WF, Lamborg CH (2013) Geochemistry of mercury in the environment. In: Treatise on geochemistry, Second edn, p 129. https://doi.org/10.1016/B978-0-08-095975-7.00904-9

    Chapter  Google Scholar 

  • Garland JL (1996) Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol Biochem 28:213–221. https://doi.org/10.1016/0038-0717(95)00112-3

    Article  CAS  Google Scholar 

  • Garland JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24:289–300. https://doi.org/10.1016/S0168-6496(97)00061-5

    Article  CAS  Google Scholar 

  • Gentès S (2012) Les micro-organismes colonisant les racines de plantes aquatiques dans les écosystèmes landais: diversité et risques liés à la méthylation du mercure. Université de Pau et des Pays de l’ADOUR.

  • Graham EB, Knelman JE, Gabor RS, Schooler S, McKnight DM, Nemergut DR (2017) Trends in dissolved organic matter cycling, sediment microbiomes, and methylmercury production across vegetation heterogeneity in a Great Lakes wetland. bioRxiv in press. https://doi.org/10.1101/072017

  • Green VS, Stott DE, Diack M (2006) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem 38:693–701. https://doi.org/10.1016/j.soilbio.2005.06.020

    Article  CAS  Google Scholar 

  • Guimarães JRD, Meili M, Hylander LD, Silva EDCE, Roulet M, Mauro JBN, De Lemos RA (2000) Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils. Sci Total Environ 261:99–107. https://doi.org/10.1016/S0048-9697(00)00628-8

    Article  Google Scholar 

  • Hou D, He J, Lü C, Sun Y, Zhang F, Otgonbayar K (2013) Effects of environmental factors on nutrients release at sediment-water interface and assessment of trophic status for a typical shallow lake, northwest China. Sci World J:1–16. https://doi.org/10.1155/2013/716342

    Article  Google Scholar 

  • Hunt R, Christiansen I (2000) Understanding dissolved oxygen in streams: information kit. CRC for Sustainable Sugar Production, Australia

    Google Scholar 

  • Inza B, Yao K (2015) Paramètres physiques et chimiques et métaux lourds des eaux de la Lagune Ebrié (Côte d’Ivoire): influence de la marée et des effluents liquides urbaines. J Mater Environ Sci 6:1321–1329

  • Inza B, Soro M, Etchian A, Trokourey A, Bokra Y (2009) Caractérisation des sédiments de surface de la baie des milliardaires, lagune ébrie, Côte d’Ivoire. Rev Int des Sci Technol 13:139–154

  • Jarvis B, Wilrich C, Wilrich PT (2010) Reconsideration of the derivation of most probable numbers, their standard deviations, confidence bounds and rarity values. J Appl Microbiol 109:1660–1667. https://doi.org/10.1111/j.1365-2672.2010.04792.x

    Article  CAS  Google Scholar 

  • Kannan K, Smith RG, Lee RF, Windom HL, Heitmuller PT, Macauley JM, Summers JK (1998) Distribution of total mercury and methyl mercury in water, sediment, and fish from South Florida estuaries. Arch Environ Contam Toxicol 34:109–118. https://doi.org/10.1007/s002449900294

    Article  CAS  Google Scholar 

  • Kim H, Lee K, Lim DI, Nam SI, heeHan S, Kim J, Lee E, Han IS, Jin YK, Zhang Y (2019) Increase in anthropogenic mercury in marginal sea sediments of the Northwest Pacific Ocean. Sci Total Environ 654:801–810. https://doi.org/10.1016/j.scitotenv.2018.11.076

    Article  CAS  Google Scholar 

  • King JK, Kostka JE, Frischer ME, Saunders FM (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol 66:2430–2437. https://doi.org/10.1128/AEM.66.6.2430-2437.2000

    Article  CAS  Google Scholar 

  • Koffi B (2009) L’environnement et la santé des populations riveraines de la lagune Ebrié. Le J des Sci Soc 6:103–116

    Google Scholar 

  • Kouamé K, Yapo O, Méité L (2016) Contamination des sédiments d’une Lagune tropicale urbaine par les éléments traces métalliques (As, Cd, Cr, Pb, Zn): Cas des baies lagunaires de La ville d’Abidjan (Côte D’ivoire). Int J Pure Appl Biosci 4:204–217

  • Kouassi A, Tidou A, Kamenan A (2005) Caractéristiques hydrochimiques et microbiologiques des eaux de la lagune Ebrié (Côte d\‘Ivoire). Partie I: Variabilité saisonnière des paramètres hydrochimiques. Agron Afr 17:117–136. https://doi.org/10.4314/aga.v17i2.1663

    Article  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415. https://doi.org/10.1016/j.soilbio.2008.05.021

    Article  CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120. https://doi.org/10.1128/AEM.00335-09

    Article  CAS  Google Scholar 

  • Macalady JL, Mack EE, Nelson DC, Scow KM (2000) Sediment microbial community structure and mercury methylation in mercury-polluted Clear Lake, California. Appl Environ Microbiol 66:1479–1488. https://doi.org/10.1128/aem.66.4.1479-1488.2000

    Article  CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31. https://doi.org/10.1007/s002440010075

    Article  CAS  Google Scholar 

  • Maggi C, Berducci MT, Bianchi J, Giani M, Campanella L (2009) Methylmercury determination in marine sediment and organisms by Direct Mercury Analyser. Anal Chim Acta 641:32–36. https://doi.org/10.1016/j.aca.2009.03.033

    Article  CAS  Google Scholar 

  • Marusczak N (2010) Etude du transfert du mercure et du méthylmercure dans les écosystèmes lacustres alpins. Université de Grenoble, France

    Google Scholar 

  • Mason RP, Laporte JM, Andres S (1999) Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Arch Environ Contam Toxicol 28:302–306. https://doi.org/10.1007/s002449910038

    Article  Google Scholar 

  • Mauro JBN, Guimarães JRD, Melamed R (1999) Mercury methylation in a tropical macrophyte: Influence of abiotic parameters. Appl Organomet Chem 13:631–636. https://doi.org/10.1002/(SICI)1099-0739(199909)13:9<631::AID-AOC905>3.0.CO;2-E

    Article  CAS  Google Scholar 

  • Monde S, Affian K, Amani E, et al (2007) Analyse temporelle de l’hydrodynamisme du secteur estuarien de la lagune Ebrié à Abidjan (Côte d’Ivoire). Impact de la variabilité climatique. Rev CAMES- Série A 5:32–38

  • Noh S, Choi M, Kim E, Dan NP, Thanh BX, Van Ha NT, Sthiannopkao S, Han S (2013) Influence of salinity intrusion on the speciation and partitioning of mercury in the Mekong River Delta. Geochim Cosmochim Acta 106:379–390. https://doi.org/10.1016/j.gca.2012.12.018

    Article  CAS  Google Scholar 

  • Oliveri E, Salvagio Manta D, Bonsignore M, Cappello S, Tranchida G, Bagnato E, Sabatino N, Santisi S, Sprovieri M (2016) Mobility of mercury in contaminated marine sediments: biogeochemical pathways. Mar Chem 186:1–10. https://doi.org/10.1016/j.marchem.2016.07.002

    Article  CAS  Google Scholar 

  • Onivogui G, Balde S, Bangoura K, Barry M (2013) Évaluation des risques de pollution en métaux lourds (Hg, Cd, Pb, Co, Ni, Zn) des eaux et des sédiments de l’estuaire du fleuve Konkouré (Rep. de Guinée). Afrique Sci 9:36–44

  • Pacyna EG, Pacyna JM, Pirrone N (2001) European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmos Environ 35:2987–2996. https://doi.org/10.1016/S1352-2310(01)00102-9

    Article  CAS  Google Scholar 

  • Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S (2006) Global anthropogenic mercury emission inventory for 2000. Atmos Environ 40:4048–4063. https://doi.org/10.1016/j.atmosenv.2006.03.041

    Article  CAS  Google Scholar 

  • Paranjape AR, Hall BD (2017) Recent advances in the study of mercury methylation in aquatic systems. FACETS 2:85–119. https://doi.org/10.1139/facets-2016-0027

    Article  Google Scholar 

  • Peery S, Doraghi A, Ronagh M, Safahieh A (2018) Mercury bioaccumulation in sediment and root of mangrove forest, Avicennia marina from Emam Khomein Port, north part of the Persian Gulf. Glob Adv Res J Agric Sci 7:183–190

  • Reis AT, Rodrigues SM, Davidson CM, Pereira E, Duarte AC (2010) Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere 81:1369–1377. https://doi.org/10.1016/j.chemosphere.2010.09.030

    Article  CAS  Google Scholar 

  • Riba I, Del Valls TÁ, Forja JM, Gómez-Parra A (2004) The influence of pH and salinity on the toxicity of heavy metals in sediment to the estuarine clam Ruditapes philippinarum. Environ Toxicol Chem 23:1100–1107. https://doi.org/10.1897/023-601

    Article  CAS  Google Scholar 

  • Roulet M (2016) Annexe 1. Le mercure: son cycle biogéochimique et sa répartition aux échelles planétaire et amazonienne, in: Le Mercure En Amazonie. p 120. https://doi.org/10.4000/books.irdeditions.2533

  • Sahuquillo A, Rauret G, Bianchi M, Rehnert A, Muntau H (2003) Mercury determination in solid phases from application of the modified BCR-sequential extraction procedure: A valuable tool for assessing its mobility in sediments. Anal Bioanal Chem 375:578–583. https://doi.org/10.1007/s00216-002-1732-x

    Article  CAS  Google Scholar 

  • Seelen EA, Massey GM, Mason RP (2018) Role of sediment resuspension on estuarine suspended particulate mercury dynamics. Environ Sci Technol 52:7736–7744. https://doi.org/10.1021/acs.est.8b01920

    Article  CAS  Google Scholar 

  • Semyalo R, Rohrlack T, Kayiira D, Kizito YS, Byarujali S, Nyakairu G, Larsson P (2011) On the diet of Nile tilapia in two eutrophic tropical lakes containing toxin producing cyanobacteria. Limnologica 41:30–36. https://doi.org/10.1016/j.limno.2010.04.002

    Article  Google Scholar 

  • Serreta S (2000) Normes internationales applicable à la consommation chimique des poissons marins. Annexe 21:8

    Google Scholar 

  • Silvennoinen H, Liikanen A, Torssonen J, Florian Stange C, Martikainen PJ (2008) Denitrification and nitrous oxide effluxes in boreal, eutrophic river sediments under increasing nitrate load: a laboratory microcosm study. Biogeochemistry 91:105–116. https://doi.org/10.1007/s10533-008-9262-z

    Article  CAS  Google Scholar 

  • Soro G, Metongo B, Soro N, Ahoussi E, Kouamé F, Zade S, Soro T (2009) Métaux lourds (Cu, Cr, Mn et Zn) dans les sédiments de surface d’une lagune tropicale africaine : cas de la lagune Ebrie (Côte d’Ivoire). Int J Biol Chem Sci 3:1408–1427. https://doi.org/10.4314/ijbcs.v3i6.53161

  • Taylor DL, Linehan JC, Murray DW, Prell WL (2012) Indicators of sediment and biotic mercury contamination in a southern New England estuary. Mar Pollut Bull 64:807–819. https://doi.org/10.1016/j.marpolbul.2012.01.013

    Article  CAS  Google Scholar 

  • Tessier E (2004) Etude de la réactivité et du transfert du tributyletain et du mercure dans les environnements aquatiques. Université de Pau et des pays de l’ADOUR

  • Tokarz E, Urban D (2015) Soil redox potential and its impact on microorganisms and plants of wetlands. J Ecol Eng 16:20–30. https://doi.org/10.12911/22998993/2801

    Article  Google Scholar 

  • Tosic M, Restrepo JD, Lonin S, Izquierdo A, Martins F (2019) Water and sediment quality in Cartagena Bay, Colombia: Seasonal variability and potential impacts of pollution. Estuar Coast Shelf Sci 216:187–203. https://doi.org/10.1016/j.ecss.2017.08.013

    Article  CAS  Google Scholar 

  • Varlet F (1978) Le régime de la lagune Ebrié, Côte d’Ivoire. Paris

  • Vowotor MK, Odumah Hood C, Sackey SS, et al (2014) An Assessment of Heavy Metal Pollution in Sediments of a Tropical Lagoon: A Case Study of the Benya Lagoon, Komenda Edina Eguafo Abrem Municipality (KEEA) — Ghana. J Heal Pollut 6:26–39. https://doi.org/10.5696/2156-9614-4-6.26

    Article  Google Scholar 

  • Wango T, Moussa T, Monde S (2008) Modèle Bi-Dimensionnel de la Lagune Ebrié (Côte d’Ivoire). Eur J Sci Res 24:229–243

    Google Scholar 

  • Watras C (1992) Mercury and mthylmercury in individual zooplankton: implications for bioaccumulation. Limnol Oceanogr 37:1313–1318

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2

    Article  CAS  Google Scholar 

  • Wognin AV, N’guessan YM, Assale FJP, Aka AM, Coulibaly AS, Monde S, Aka K (2017) Les éléments traces métalliques dans la lagune Ebrié: distribution saisonnière, niveau de contamination et qualité environnementale des sédiments. Int. J. Biol. Chem. Sci. 11:911–923. https://doi.org/10.4314/ijbcs.v11i2.30

    Article  CAS  Google Scholar 

  • Yao MK, Brou YS, Trokourey A, Soro MB (2017) Metal pollution and ecological risk assessment in sediment of artificial estuary: case of Vridi Channel, Côte d’Ivoire. J Appl Sci Environ Manag 21:785–792. https://doi.org/10.4314/jasem.v21i4.20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work would not have been possible without the logistical support provided by two laboratories in France and Côte d’Ivoire. We would like to thank Regis Moilleron for providing access to his hydrobiology lab for experimentation. We gratefully acknowledge Alexandre Livet for his analytical assistance.

Funding

This study is financially supported by the PASRES program of the Swiss Center for Scientific Research since 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarisse Balland-Bolou-Bi.

Additional information

Responsible editor: Severine Le Faucheur

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouame, L.B.C., Bolou Bi, E.B., Aka, N. et al. Seasonality of Hg dynamics in the Ebrié Lagoon (Côte d’Ivoire) ecosystem: influence of biogeochemical factors. Environ Sci Pollut Res 27, 19810–19825 (2020). https://doi.org/10.1007/s11356-020-08471-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08471-3

Keywords

Navigation