Skip to main content
Log in

Mast cells and collagen fibrillogenesis

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

This article presents 20 combinations of histochemical stainings for the determination of mast cell co-localization with the fibrous component of the connective tissue in the fibrillogenesis course. Best results were obtained using metachromatic detection of mast cells in combination with silver or picro-fuchsin impregnation, staining with brilliant green using van Gieson staining, and a combination of aniline blue staining with neutral red. Proposed variants of histochemical protocols open up new opportunities to analyze the participation of mast cells in extracellular matrix remodeling of the tissue microenvironment in the course of adaptive and pathological processes. Results obtained expand the current theoretical views of the process of fibrillogenesis in the extracellular matrix. They also shed new light on the participation of mast cell secretion components in the molecular mechanisms of fiber formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal G, Smith AW, Jones B (2019) Discoidin domain receptors: micro insights into macro assemblies. Biochim Biophys Acta Mol Cell Res 1866:118496

    PubMed  Google Scholar 

  • Algermissen B, Hermes B, Feldmann-Boeddeker I, Bauer F, Henz BM (1999) Mast cell chymase and tryptase during tissue turnover: analysis on in vitro mitogenesis of fibroblasts and keratinocytes and alterations in cutaneous scars. Exp Dermatol 8:193–198

    CAS  PubMed  Google Scholar 

  • Arques DG, Fallot JP, Michel CJ (1996) Identification of several types of periodicities in the collagens and their simulation. Int J Biol Macromol 19:131–138

    CAS  PubMed  Google Scholar 

  • Artuc M, Steckelings UM, Henz BM (2002) Mast cell-fibroblast interactions: human mast cells as source and inducers of fibroblast and epithelial growth factors. J Invest Dermatol 118:391–395

    CAS  PubMed  Google Scholar 

  • Atiakshin D, Samoilova V, Buchwalow I, Boecker W, Tiemann M (2017) Characterization of mast cell populations using different methods for their identification. Histochem Cell Biol 147:683–694

    CAS  PubMed  Google Scholar 

  • Atiakshin D, Buchwalow I, Samoilova V, Tiemann M (2018) Tryptase as a polyfunctional component of mast cells. Histochem Cell Biol 149:461–477

    CAS  PubMed  Google Scholar 

  • Atiakshin D, Buchwalow I, Tiemann M (2019) Mast cell chymase: morphofunctional characteristics. Histochem Cell Biol 152:253–269

    CAS  PubMed  Google Scholar 

  • Au SR, Au K, Saggers GC, Karne N, Ehrlich HP (2007) Rat mast cells communicate with fibroblasts via gap junction intercellular communications. J Cell Biochem 100:1170–1177

    CAS  PubMed  Google Scholar 

  • Bancelin S, Aime C, Gusachenko I, Kowalczuk L, Latour G, Coradin T, Schanne-Klein MC (2014a) Determination of collagen fibril size via absolute measurements of second-harmonic generation signals. Nat Commun 5:4920

    CAS  PubMed  Google Scholar 

  • Bancelin S, Decenciere E, Machairas V, Albert C, Coradin T, Schanne-Klein MC, Aime C (2014b) Fibrillogenesis from nanosurfaces: multiphoton imaging and stereological analysis of collagen 3D self-assembly dynamics. Soft Matter 10:6651–6657

    CAS  PubMed  Google Scholar 

  • Bard JB, Hulmes DJ, Purdom IF, Ross AS (1993) Chick corneal development in vitro: diverse effects of pH on collagen assembly. J Cell Sci 105(Pt 4):1045–1055

    CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Wang W, Morales-Nebreda L, Feng G, Wu M, Zhou X, Lafyatis R, Lee J, Hinchcliff M, Feghali-Bostwick C, Lakota K, Budinger GR, Raparia K, Tamaki Z, Varga J (2016) Tenascin-C drives persistence of organ fibrosis. Nat Commun 7:11703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Birk DE, Trelstad RL (1986) Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Biol 103:231–240

    CAS  PubMed  Google Scholar 

  • Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF (1990a) Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci 95(Pt 4):649–657

    CAS  PubMed  Google Scholar 

  • Birk DE, Zycband EI, Winkelmann DA, Trelstad RL (1990b) Collagen fibrillogenesis in situ. Discontinuous segmental assembly in extracellular compartments. Ann N Y Acad Sci 580:176–194

    CAS  PubMed  Google Scholar 

  • Borcherding MS, Blacik LJ, Sittig RA, Bizzell JW, Breen M, Weinstein HG (1975) Proteoglycans and collagen fibre organization in human corneoscleral tissue. Exp Eye Res 21:59–70

    CAS  PubMed  Google Scholar 

  • Bornstein P, Sage EH (2002) Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14:608–616

    CAS  PubMed  Google Scholar 

  • Brown M, O'Reilly S (2019) The immunopathogenesis of fibrosis in systemic sclerosis. Clin Exp Immunol 195:310–321

    CAS  PubMed  Google Scholar 

  • Buchwalow I, Boecker W, Tiemann M (2015) The contribution of Paul Ehrlich to histochemistry: a tribute on the occasion of the centenary of his death. Virchows Arch 466:111–116

    CAS  PubMed  Google Scholar 

  • Buchwalow I, Atiakshin D, Pavlova T, Tiemann M (2018) Histochemistry. Nauchnaya Kniga, Voronezh (In Russian)

    Google Scholar 

  • Byers PH (2000) Collagens: building blocks at the end of the development line. Clin Genet 58:270–279

    CAS  PubMed  Google Scholar 

  • Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118:1341–1353

    CAS  PubMed  Google Scholar 

  • Canty EG, Lu Y, Meadows RS, Shaw MK, Holmes DF, Kadler KE (2004) Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon. J Cell Biol 165:553–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castagnoli C, Stella M, Berthod C, Magliacani G, Richiardi PM (1993) TNF production and hypertrophic scarring. Cell Immunol 147:51–63

    CAS  PubMed  Google Scholar 

  • Chen H, Xu Y, Yang G, Zhang Q, Huang X, Yu L, Dong X (2017) Mast cell chymase promotes hypertrophic scar fibroblast proliferation and collagen synthesis by activating TGF-beta1/Smads signaling pathway. Exp Ther Med 14:4438–4442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cipriani P, Di Benedetto P, Ruscitti P, Capece D, Zazzeroni F, Liakouli V, Pantano I, Berardicurti O, Carubbi F, Pecetti G, Turricchia S, Alesse E, Iglarz M, Giacomelli R (2015) The endothelial-mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-beta and may be blocked by macitentan, a dual endothelin-1 receptor antagonist. J Rheumatol 42:1808–1816

    CAS  PubMed  Google Scholar 

  • Cisneros DA, Hung C, Franz CM, Muller DJ (2006) Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. J Struct Biol 154:232–245

    CAS  PubMed  Google Scholar 

  • Colige A, Vandenberghe I, Thiry M, Lambert CA, Van Beeumen J, Li SW, Prockop DJ, Lapiere CM, Nusgens BV (2002) Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J Biol Chem 277:5756–5766

    CAS  PubMed  Google Scholar 

  • Conti P, Caraffa A, Mastrangelo F, Tettamanti L, Ronconi G, Frydas I, Kritas SK, Theoharides TC (2018) Critical role of inflammatory mast cell in fibrosis: potential therapeutic effect of IL-37. Cell Prolif 51:e12475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dabbs DJ (2014) Diagnostic immunohistochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Di S, Ziyou Y, Liu NF (2016) Pathological changes of lymphedematous skin: increased mast cells, related proteases, and activated transforming growth factor-beta1. Lymphat Res Biol 14:162–171

    CAS  PubMed  Google Scholar 

  • Dwyer DF, Barrett NA, Austen KF, Immunological Genome Project C (2016) Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol 17:878–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich P (1878) Beiträge für theorie und praxis der histologischen färbung, vol Doktor. Leipzig University, Leipzig, p 65

    Google Scholar 

  • Espinosa E, Valitutti S (2018) New roles and controls of mast cells. Curr Opin Immunol 50:39–47

    CAS  PubMed  Google Scholar 

  • Fan SQ, Cai JL, Qin LY, Wang ZH, Liu ZZ, Sun ML (2008) Effect of heparin on production of transforming growth factor (TGF)-beta1 and TGF-beta1 mRNA expression by human normal skin and hyperplastic scar fibroblasts. Ann Plast Surg 60:299–305

    CAS  PubMed  Google Scholar 

  • Fridman R, Agarwal G (2019) New concepts on the interactions of discoidin domain receptors with collagen. Biochim Biophys Acta Mol Cell Res 1866:118527

    PubMed  Google Scholar 

  • Frossi B, Mion F, Sibilano R, Danelli L, Pucillo CEM (2018) Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol Rev 282:35–46

    CAS  PubMed  Google Scholar 

  • Galli SJ, Tsai M (2008) Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J Dermatol Sci 49:7–19

    CAS  PubMed  Google Scholar 

  • Garbuzenko E, Berkman N, Puxeddu I, Kramer M, Nagler A, Levi-Schaffer F (2004) Mast cells induce activation of human lung fibroblasts in vitro. Exp Lung Res 30:705–721

    CAS  PubMed  Google Scholar 

  • Ghazanfari S, Khademhosseini A, Smit TH (2016) Mechanisms of lamellar collagen formation in connective tissues. Biomaterials 97:74–84

    CAS  PubMed  Google Scholar 

  • Graham HK, Holmes DF, Watson RB, Kadler KE (2000) Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction. J Mol Biol 295:891–902

    CAS  PubMed  Google Scholar 

  • Harris JR, Lewis RJ (2016) The collagen type I segment long spacing (SLS) and fibrillar forms: formation by ATP and sulphonated diazo dyes. Micron 86:36–47

    CAS  PubMed  Google Scholar 

  • Hashimoto S, Gon Y, Takeshita I, Maruoka S, Horie T (2001) IL-4 and IL-13 induce myofibroblastic phenotype of human lung fibroblasts through c-Jun NH2-terminal kinase-dependent pathway. J Allergy Clin Immunol 107:1001–1008

    CAS  PubMed  Google Scholar 

  • Hitchcock AM, Yates KE, Costello CE, Zaia J (2008) Comparative glycomics of connective tissue glycosaminoglycans. Proteomics 8:1384–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hogaboam C, Kunkel SL, Strieter RM, Taub DD, Lincoln P, Standiford TJ, Lukacs NW (1998) Novel role of transmembrane SCF for mast cell activation and eotaxin production in mast cell-fibroblast interactions. J Immunol 160:6166–6171

    CAS  PubMed  Google Scholar 

  • Hugle T (2014) Beyond allergy: the role of mast cells in fibrosis. Swiss Med Wkly 144:w13999

    PubMed  Google Scholar 

  • Ina K, Kitamura H, Tatsukawa S, Miyazaki T, Abe H, Fujikura Y (2005) Intracellular formation of collagen microfibrils in granulation tissue. Exp Mol Pathol 79:244–248

    CAS  PubMed  Google Scholar 

  • Jing J, Dou TT, Yang JQ, Chen XB, Cao HL, Min M, Cai SQ, Zheng M, Man XY (2015) Role of endothelin-1 in the skin fibrosis of systemic sclerosis. Eur Cytokine Netw 26:10–14

    CAS  PubMed  Google Scholar 

  • Kadler KE, Hill A, Canty-Laird EG (2008) Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20:495–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalamajski S, Oldberg A (2010) The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol 29:248–253

    CAS  PubMed  Google Scholar 

  • Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaviratne M, Hesse M, Leusink M, Cheever AW, Davies SJ, McKerrow JH, Wakefield LM, Letterio JJ, Wynn TA (2004) IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. J Immunol 173:4020–4029

    CAS  PubMed  Google Scholar 

  • Kessler E, Takahara K, Biniaminov L, Brusel M, Greenspan DS (1996) Bone morphogenetic protein-1: the type I procollagen C-proteinase. Science 271:360–362

    CAS  PubMed  Google Scholar 

  • Kim KK, Chapman HA (2007) Endothelin-1 as initiator of epithelial-mesenchymal transition: potential new role for endothelin-1 during pulmonary fibrosis. Am J Respir Cell Mol Biol 37:1–2

    CAS  PubMed  Google Scholar 

  • Kim DK, Beaven MA, Metcalfe DD, Olivera A (2018) Interaction of DJ-1 with Lyn is essential for IgE-mediated stimulation of human mast cells. J Allergy Clin Immunol 142(195–206):e198

    Google Scholar 

  • Kofford MW, Schwartz LB, Schechter NM, Yager DR, Diegelmann RF, Graham MF (1997) Cleavage of type I procollagen by human mast cell chymase initiates collagen fibril formation and generates a unique carboxyl-terminal propeptide. J Biol Chem 272:7127–7131

    CAS  PubMed  Google Scholar 

  • Koma Y, Ito A, Watabe K, Hirata T, Mizuki M, Yokozaki H, Kitamura T, Kanakura Y, Kitamura Y (2005) Distinct role for c-kit receptor tyrosine kinase and SgIGSF adhesion molecule in attachment of mast cells to fibroblasts. Lab Invest 85:426–435

    CAS  PubMed  Google Scholar 

  • Kulke M, Geist N, Friedrichs W, Langel W (2017) Molecular dynamics simulations on networks of heparin and collagen. Proteins 85:1119–1130

    CAS  PubMed  Google Scholar 

  • Kuznetsova N, Leikin S (1999) Does the triple helical domain of type I collagen encode molecular recognition and fiber assembly while telopeptides serve as catalytic domains? Effect of proteolytic cleavage on fibrillogenesis and on collagen-collagen interaction in fibers. J Biol Chem 274:36083–36088

    CAS  PubMed  Google Scholar 

  • Kuznetsova N, Chi SL, Leikin S (1998) Sugars and polyols inhibit fibrillogenesis of type I collagen by disrupting hydrogen-bonded water bridges between the helices. Biochemistry 37:11888–11895

    CAS  PubMed  Google Scholar 

  • Lindstedt KA, Wang Y, Shiota N, Saarinen J, Hyytiainen M, Kokkonen JO, Keski-Oja J, Kovanen PT (2001) Activation of paracrine TGF-beta1 signaling upon stimulation and degranulation of rat serosal mast cells: a novel function for chymase. FASEB J 15:1377–1388

    CAS  PubMed  Google Scholar 

  • Loerakker S, Obbink-Huizer C, Baaijens FP (2014) A physically motivated constitutive model for cell-mediated compaction and collagen remodeling in soft tissues. Biomech Model Mechanobiol 13:985–1001

    PubMed  Google Scholar 

  • Lojda Z, Gossrau R, Schiebler T (1976) Enzyme histochemistry. A laboratory manual. Springer, Berlin

    Google Scholar 

  • Lombardo J, Broadwater D, Collins R, Cebe K, Brady R, Harrison S (2019) Hepatic mast cell concentration directly correlates to stage of fibrosis in NASH. Hum Pathol 86:129–135

    PubMed  Google Scholar 

  • Mienaltowski MJ, Birk DE (2014) Structure, physiology, and biochemistry of collagens. Adv Exp Med Biol 802:5–29

    CAS  PubMed  Google Scholar 

  • Muldashev ER, Muslimov SA, Musina LA, Nigmatullin RT, Lebedeva AI, Shangina OR, Khasanov RA (2005) The role of macrophages in the tissues regeneration stimulated by the biomaterials. Cell Tissue Bank 6:99–107

    CAS  PubMed  Google Scholar 

  • Oki T, Kitaura J, Eto K, Lu Y, Maeda-Yamamoto M, Inagaki N, Nagai H, Yamanishi Y, Nakajima H, Kumagai H, Kitamura T (2006) Integrin alphaIIbbeta3 induces the adhesion and activation of mast cells through interaction with fibrinogen. J Immunol 176:52–60

    CAS  PubMed  Google Scholar 

  • Olivera A, Beaven MA, Metcalfe DD (2018) Mast cells signal their importance in health and disease. J Allergy Clin Immunol 142:381–393

    CAS  PubMed  Google Scholar 

  • Omel'yanenko NP (2009) The connective tissue (histophysiology and biochemistry). Izd-vo inostrannoy literatury, Moscow (In Russian)

  • Overed-Sayer C, Rapley L, Mustelin T, Clarke DL (2013) Are mast cells instrumental for fibrotic diseases? Front Pharmacol 4:174

    PubMed  Google Scholar 

  • Park SH, Saleh D, Giaid A, Michel RP (1997) Increased endothelin-1 in bleomycin-induced pulmonary fibrosis and the effect of an endothelin receptor antagonist. Am J Respir Crit Care Med 156:600–608

    CAS  PubMed  Google Scholar 

  • Pearse A (1960) Histochemistry. Theoretical and applied. Little, Brown, Boston

    Google Scholar 

  • Pincha N, Hajam EY, Badarinath K, Batta SPR, Masudi T, Dey R, Andreasen P, Kawakami T, Samuel R, George R, Danda D, Jacob PM, Jamora C (2018) PAI1 mediates fibroblast-mast cell interactions in skin fibrosis. J Clin Invest 128:1807–1819

    PubMed  PubMed Central  Google Scholar 

  • Puebla-Osorio N, Sarchio SNE, Ullrich SE, Byrne SN (2017) Detection of infiltrating mast cells using a modified toluidine blue staining. Methods Mol Biol 1627:213–222

    CAS  PubMed  Google Scholar 

  • Ramirez F, Rifkin DB (2003) Cell signaling events: a view from the matrix. Matrix Biol 22:101–107

    CAS  PubMed  Google Scholar 

  • Raspanti M, Reguzzoni M, Protasoni M, Basso P (2018) Not only tendons: the other architecture of collagen fibrils. Int J Biol Macromol 107:1668–1674

    CAS  PubMed  Google Scholar 

  • Rath F-W (1981) Praktisch-diagnostische Enzymhistochemie. Anwendungsmöglichkeiten und Grenzen enzymhistochemischer Methoden in der klinischen Pathologie. VEB Gustav Fischer Verlag, Jena

  • Redegeld FA, Yu Y, Kumari S, Charles N, Blank U (2018) Non-IgE mediated mast cell activation. Immunol Rev 282:87–113

    CAS  PubMed  Google Scholar 

  • Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3:a004978

    PubMed  PubMed Central  Google Scholar 

  • Ricard-Blum S, Ballut L (2011) Matricryptins derived from collagens and proteoglycans. Front Biosci 16:674–697

    CAS  Google Scholar 

  • Rittie L (2017a) Method for picrosirius red-polarization detection of collagen fibers in tissue sections. Methods Mol Biol 1627:395–407

    CAS  PubMed  Google Scholar 

  • Rittie L (2017b) Type I collagen purification from rat tail tendons. Methods Mol Biol 1627:287–308

    CAS  PubMed  Google Scholar 

  • Rittie L, Hutcheon AEK, Zieske JD (2017) Mouse models of corneal scarring. Methods Mol Biol 1627:117–122

    CAS  PubMed  Google Scholar 

  • Robida PA, Puzzovio PG, Pahima H, Levi-Schaffer F, Bochner BS (2018) Human eosinophils and mast cells: Birds of a feather flock together. Immunol Rev 282:151–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romeis B (2010) Mikroskopische technik. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Ronnberg E, Melo FR, Pejler G (2012) Mast cell proteoglycans. J Histochem Cytochem 60:950–962

    PubMed  PubMed Central  Google Scholar 

  • Ross B, D'Orleans-Juste P, Giaid A (2010) Potential role of endothelin-1 in pulmonary fibrosis: from the bench to the clinic. Am J Respir Cell Mol Biol 42:16–20

    CAS  PubMed  Google Scholar 

  • Sakaguchi H, Takai S, Sakaguchi M, Sugiyama T, Ishihara T, Yao Y, Miyazaki M, Ikeda T (2002) Chymase and angiotensin converting enzyme activities in a hamster model of glaucoma filtering surgery. Curr Eye Res 24:325–331

    PubMed  Google Scholar 

  • Scott IC, Blitz IL, Pappano WN, Imamura Y, Clark TG, Steiglitz BM, Thomas CL, Maas SA, Takahara K, Cho KW, Greenspan DS (1999) Mammalian BMP-1/tolloid-related metalloproteinases, including novel family member mammalian Tolloid-like 2, have differential enzymatic activities and distributions of expression relevant to patterning and skeletogenesis. Dev Biol 213:283–300

    CAS  PubMed  Google Scholar 

  • Shimbori C, Upagupta C, Bellaye PS, Ayaub EA, Sato S, Yanagihara T, Zhou Q, Ognjanovic A, Ask K, Gauldie J, Forsythe P, Kolb MRJ (2019) Mechanical stress-induced mast cell degranulation activates TGF-beta1 signalling pathway in pulmonary fibrosis. Thorax 74:455–465

    PubMed  Google Scholar 

  • Shi-Wen X, Denton CP, Dashwood MR, Holmes AM, Bou-Gharios G, Pearson JD, Black CM, Abraham DJ (2001) Fibroblast matrix gene expression and connective tissue remodeling: role of endothelin-1. J Invest Dermatol 116:417–425

    CAS  PubMed  Google Scholar 

  • Sun Y, Ramires FJ, Zhou G, Ganjam VK, Weber KT (1997) Fibrous tissue and angiotensin II. J Mol Cell Cardiol 29:2001–2012

    CAS  PubMed  Google Scholar 

  • Taipale J, Lohi J, Saarinen J, Kovanen PT, Keski-Oja J (1995) Human mast cell chymase and leukocyte elastase release latent transforming growth factor-beta 1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 270:4689–4696

    CAS  PubMed  Google Scholar 

  • Tan H, Chen Z, Chen F, Yao Y, Lai Y, Xu W, Liu X (2018) Tryptase promotes the profibrotic phenotype transfer of atrial fibroblasts by PAR2 and PPARgamma pathway. Arch Med Res 49:568–575

    CAS  PubMed  Google Scholar 

  • Termei R, Laschinger C, Lee W, McCulloch CA (2013) Intercellular interactions between mast cells and fibroblasts promote pro-inflammatory signaling. Exp Cell Res 319:1839–1851

    CAS  PubMed  Google Scholar 

  • Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D (2012) Mast cells and inflammation. Biochim Biophys Acta 1822:21–33

    CAS  PubMed  Google Scholar 

  • Trelstad RL (1982) Multistep assembly of type I collagen fibrils. Cell 28:197–198

    CAS  PubMed  Google Scholar 

  • Wermuth PJ, Li Z, Mendoza FA, Jimenez SA (2016) Stimulation of transforming growth factor-beta1-induced endothelial-to-mesenchymal transition and tissue fibrosis by endothelin-1 (ET-1): a novel profibrotic effect of ET-1. PLoS ONE 11:e0161988

    PubMed  PubMed Central  Google Scholar 

  • Wernersson S, Pejler G (2014) Mast cell secretory granules: armed for battle. Nat Rev Immunol 14:478–494

    CAS  PubMed  Google Scholar 

  • Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T, Kisanuki YY, Yanagisawa M, Hirata K (2010) Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 121:2407–2418

    CAS  PubMed  Google Scholar 

  • Wu K, Li G (2015) Investigation of the lag phase of collagen fibrillogenesis using fluorescence anisotropy. Appl Spectrosc 69:1121–1128

    CAS  PubMed  Google Scholar 

  • Xu SW, Howat SL, Renzoni EA, Holmes A, Pearson JD, Dashwood MR, Bou-Gharios G, Denton CP, du Bois RM, Black CM, Leask A, Abraham DJ (2004) Endothelin-1 induces expression of matrix-associated genes in lung fibroblasts through MEK/ERK. J Biol Chem 279:23098–23103

    CAS  PubMed  Google Scholar 

  • Yun SM, Kim SH, Kim EH (2019) The molecular mechanism of transforming growth factor-beta signaling for intestinal fibrosis: a mini-review. Front Pharmacol 10:162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XY, Zhao LY, Zheng QS, Su JL, Guan H, Shang FJ, Niu XL, He YP, Lu XL (2008) Chymase induces profibrotic response via transforming growth factor-beta 1/Smad activation in rat cardiac fibroblasts. Mol Cell Biochem 310:159–166

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Buchwalow.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atiakshin, D., Buchwalow, I. & Tiemann, M. Mast cells and collagen fibrillogenesis. Histochem Cell Biol 154, 21–40 (2020). https://doi.org/10.1007/s00418-020-01875-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-020-01875-9

Keywords

Navigation