Synthesis 2020; 52(14): 2092-2098
DOI: 10.1055/s-0039-1707988
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium/Norbornene Chemistry in the Synthesis of Polycyclic Indolines with Simple Nitrogen Sources

Mehran Ghasemi
a   School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran   Email: jafarpur@khayam.ut.ac.ir
b   Faculty of Chemistry, Kharazmi University, No. 43 Mofateh Street, Enghelab Ave., 15719-14911 Tehran, Iran   Email: habibi@khu.ac.ir
,
Farnaz Jafarpour
a   School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran   Email: jafarpur@khayam.ut.ac.ir
,
Azizollah Habibi
b   Faculty of Chemistry, Kharazmi University, No. 43 Mofateh Street, Enghelab Ave., 15719-14911 Tehran, Iran   Email: habibi@khu.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 19 December 2019

Accepted after revision: 15 February 2020

Publication Date:
27 March 2020 (online)


Abstract

An efficient procedure has been developed to synthesize ­indoline derivatives through a palladium-catalyzed Heck reaction/C–H activation/dual amination cascade in one pot. This constitutes the first intermolecular catalytic approach to directly access N-alkylindolines with a broad substrate scope in the absence of any ligands. This method highlights the use of readily available amines and ureas as the required nitrogen sources in building up the indoline core.

Supporting Information

 
  • References


    • For reviews, see:
    • 1a Liu D, Zhao G, Xiang L. Eur. J. Org. Chem. 2010; 3975
    • 1b Silva TS, Rodrigues MT. Jr, Santos H, Zeoly LA, Almeida WP, Barcelos RC, Gomes RC, Fernandes FS, Coelho F. Tetrahedron 2019; 75: 2063
    • 2a Rosato RR, Stephen EL, Pannier WL. Toxicol. Appl. Pharmacol. 1976; 35: 107
    • 2b Bermudez J, Dabbs S, Joiner KA, King FD. J. Med. Chem. 1990; 33: 1929
    • 2c Holsy PB, Anthoni U, Christophersen C, Nielsen PH. J. Nat. Prod. 1994; 57: 997
    • 2d Triggle DJ, Mitchell JM, Filler R. CNS Drug Rev. 1998; 4: 87
    • 2e Austin JF, Kim S.-G, Sinz CJ, Xiao W.-J, Macmillan DW. C. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 5482
    • 2f Gul W, Hamann MT. Life Sci. 2005; 78: 442
    • 2g Rode MA, Rindhe SS, Karale B. J. Sreb. Chem. Soc. 2009; 74: 1377
    • 2h Ruiz-Sanchis P, Savina SA, Albericio F, Álvarez M. Chem. Eur. J. 2011; 17: 1388
    • 2i Annedi SC, Ramnauth J, Maddaford SP, Renton P, Rakhit S, Mladenova G, Dove P, Silverman S, Andrews JS, Felice MD, Porreca F. J. Med. Chem. 2012; 55: 943
  • 3 Zhang H, Boonsombat J, Padwa A. Org. Lett. 2007; 9: 279
  • 4 Bui T, Syed S, Barbas CF. III. J. Am. Chem. Soc. 2009; 131: 8758
  • 5 Iyengar R, Schildknegt K, Morton M, Aube J. J. Org. Chem. 2005; 70: 10645
  • 6 Rakhit A, Hurley ME, Tipnis V, Coleman J, Rommel A, Brunner HR. J. Clin. Pharmacol. 1986; 26: 156
  • 7 Xiang L, Xing D, Wang W, Wang R, Ding Y, Du L. Phytochemistry 2005; 66: 2595

    • For Buchwald–Hartwig amination, see:
    • 8a Guram AS, Rennels RA, Buchwald SL. Angew. Chem. Int. Ed. 1995; 34: 1348
    • 8b Peat AJ, Buchwald SL. J. Am. Chem. Soc. 1996; 118: 1028

    • For representative indoline synthesis using Buchwald–Hartwig amination reactions, see:
    • 8c Yang BH, Buchwald SL. Org. Lett. 1999; 1: 35
    • 8d Yamada K, Kubo T, Tokuyama H, Fukuyama T. Synlett 2002; 231
    • 8e Omar-Amrani R, Thomas A, Brenner E, Schneider R, Fort Y. Org. Lett. 2003; 5: 2311
    • 8f Omar-Amrani R, Schneider R, Fort Y. Synthesis 2004; 2527
    • 8g Anderson JC, Noble A, Tocher DA. J. Org. Chem. 2012; 77: 6703
    • 8h Harada R, Nishida N, Uchiito S, Onozaki Y, Kurono N, Senboku H, Masao T, Ohkuma T, Orito K. Eur. J. Org. Chem. 2012; 366
    • 8i Ghorai MK, Nanaji Y. J. Org. Chem. 2013; 78: 3867
    • 8j Sirvent JA, Foubelo F, Yus M. J. Org. Chem. 2014; 79: 1356
    • 8k Sayyad M, Nanaji Y, Ghorai M. J. Org. Chem. 2015; 80: 12659
    • 8l Presset M, Pignon A, Paul J, Le Gall E, Leonel E, Martens T. J. Org. Chem. 2017; 82: 3302
    • 8m De Souza Fernandes F, Cormanich RA, Zeoly LA, Formiga AL. B, Coelho F. Eur. J. Org. Chem. 2018; 3211
    • 9a Li J.-J, Mei T.-S, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 6452
    • 9b He G, Zhao Y, Zhang S, Lu C, Chen G. J. Am. Chem. Soc. 2012; 134: 3
    • 9c Nadres ET, Daugulis O. J. Am. Chem. Soc. 2012; 134: 7
    • 9d He G, Lu C, Zhao Y, Nack WA, Chen G. Org. Lett. 2012; 14: 2944
    • 9e Mei T.-S, Leow D, Xiao H, Laforteza BN, Yu J.-Q. Org. Lett. 2013; 15: 3058
    • 9f Ye X, He Z, Ahmed T, Weise K, Akhmedov NG, Petersen JL, Shi X. Chem. Sci. 2013; 4: 3712
    • 9g Wang C, Chen C, Zhang J, Han J, Wang Q, Guo K, Liu P, Guan M, Yao Y, Zhao Y. Angew. Chem. Int. Ed. 2014; 53: 9884
    • 9h He Y.-P, Zhang C, Fan M, Wu Z, Ma D. Org. Lett. 2015; 17: 496
    • 9i Takamatsu K, Hirano K, Satoh T, Miura M. J. Org. Chem. 2015; 80: 3242
    • 9j Zheng Y, Song W, Zhu Y, Wei B, Xuan L. Org. Biomol. Chem. 2018; 16: 2402
    • 9k Henry MC, Senn HM, Sutherland A. J. Org. Chem. 2019; 84: 346
  • 10 Kumar GS, Singh D, Kumar M, Kapur M. J. Org. Chem. 2018; 83: 3941
  • 11 Zhao D, Vásquez-Céspedes S, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 1657

    • For reviews, see:
    • 12a Catellani M. Synlett 2003; 298
    • 12b Catellani M. Top. Organomet. Chem. 2005; 14: 21
    • 12c Catellani M, Motti E, Della Ca’ N. Acc. Chem. Res. 2008; 41: 1512
    • 12d Martins A, Mariampillai B, Lautens M. Top. Curr. Chem. 2009; 292: 1
    • 12e Ye J, Lautens M. Nat. Chem. 2015; 7: 863
    • 12f Della Ca’ N, Fontana M, Motti E, Catellani M. Acc. Chem. Res. 2016; 49: 1389
    • 12g Liu Z.-S, Gao Q, Cheng H.-G, Zhou Q. Chem. Eur. J. 2018; 24: 15461
    • 12h Zhao K, Ding L, Gu Z. Synlett 2019; 30: 129
    • 12i Wang J, Dong G. Chem. Rev. 2019; 119: 7478
  • 13 Zheng H, Zhu Y, Shi Y. Angew. Chem. Int. Ed. 2014; 53: 11280
  • 14 Liu C, Liang Y, Zheng N, Zhang B.-S, Feng Y, Bi S, Liang Y.-M. Chem. Commun. 2018; 54: 3407
  • 15 Wang Z, Li P, Fu H, Dai Q, Hu C. Adv. Synth. Catal. 2019; 361: 192
  • 16 Jafarpour F, Jalalimanesh N, Teimouri M, Shamsianpour M. Chem. Commun. 2015; 51: 225
  • 17 Annedi SC, Ramnauth J, Maddaford SP, Renton P, Rakhit S, Mladenova G, Dove P, Silverman S, Andrews JS, Felice MD, Porreca F. J. Med. Chem. 2012; 55: 943

    • For related reviews on C–N single bond cleavage reactions, see:
    • 18a Ouyang K, Hao W, Zhang W.-X, Xi Z. Chem. Rev. 2015; 115: 12045
    • 18b Desnoyer AN, Love JA. Chem. Soc. Rev. 2017; 46: 197
  • 19 Cardenas DJ, Martin-Matute B, Echavarren AM. J. Am. Chem. Soc. 2006; 128: 5033
  • 20 Maestri G, Motti E, Della Ca’ N, Malacria M, Derat E, Catellani M. J. Am. Chem. Soc. 2011; 133: 8574