• Rapid Communication

Tsallis meets Boltzmann: q-index for a finite ideal gas and its thermodynamic limit

J. A. S. Lima and A. Deppman
Phys. Rev. E 101, 040102(R) – Published 23 April 2020

Abstract

Nonadditive Tsallis q-statistics has successfully been applied for a plethora of systems in natural sciences and other branches of knowledge. Nevertheless, its foundations have been severely criticized by some authors based on the standard additive Boltzmann-Gibbs approach, thereby remaining a quite controversial subject. In order to clarify some polemical concepts, the distribution function for an ideal gas with a finite number of point particles and its q-index are analytically determined. The two-particle correlation function is also derived. The degree of correlation diminishes continuously with the growth of the number of particles. The ideal finite gas system is usually correlated, becomes less correlated when the number of particles grows, and is finally fully uncorrelated when the molecular chaos regime is reached. It is also advocated that both approaches can be confronted through a careful kinetic spectroscopic experiment. The analytical results derived here suggest that Tsallis q-statistics may play a physical role more fundamental than usually discussed in the literature.

  • Received 25 February 2020
  • Accepted 27 March 2020

DOI:https://doi.org/10.1103/PhysRevE.101.040102

©2020 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

J. A. S. Lima1,* and A. Deppman2,†

  • 1Departamento de Astronomia (IAG-USP), Universidade de São Paulo, 05508-090 São Paulo SP, Brasil
  • 2Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, Brasil

  • *jas.lima@iag.usp.br
  • deppman@if.usp.br

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 101, Iss. 4 — April 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×