Skip to main content
Log in

A Kane’s based algorithm for closed-form dynamic analysis of a new design of a 3RSS-S spherical parallel manipulator

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a systematic methodology to obtain a closed-form formulation for dynamics analysis of a new design of a fully spherical robot that is called a 3(RSS)-S parallel manipulator with real co-axial actuated shafts. The proposed robot can completely rotate about a vertical axis and can be used in celestial orientation and rehabilitation applications. After describing the robot and its inverse position, velocity and acceleration analysis is performed. Next, based on Kane’s method, a methodology for deriving the dynamical equations of motion is developed. The elaborated approach shows that the inverse dynamics of the manipulator can be reduced to solving a system of three linear equations in three unknowns. Finally, a computational algorithm to solve the inverse dynamics of the manipulator is advised and several trajectories of the moving platform are simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu, X., Wang, J., Li, T., Duan, G.: Parallel mechanisms with two or three degrees of freedom. Tsinghua Sci. Technol. 8(1), 105 (2003). ISSN 1007-0214

    Google Scholar 

  2. Akbarzadeh, A., Enferadi, J., Sharifnia, M.: Dynamics analysis of a 3-RRP spherical parallel manipulator using the natural orthogonal complement. Nonlinear Dyn. 61, 419–434 (2010)

    Article  MATH  Google Scholar 

  3. Patel, Y.D., George, P.M.: In: Parallel Manipulator Applications – A Survey Modern Mechanic Engineering, pp. 57–64 (2012)

    Google Scholar 

  4. Robotic Institute, Beijing University of Aeronautics and Astronautics: Inverse kinematic and dynamics of 3-RRS parallel platform. In: International Conference on Robotic and Automation, Seoul, Korea (2001)

    Google Scholar 

  5. Enferadi, J., Tootoonchi, A.A.: Inverse Dynamic Analysis of a General Spherical Star-Triangle Parallel Manipulator Using Principle of Virtual Work. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Hussain, Z., Azlan, N.Z.: Kane’s method for dynamic modeling. In: I2CACIS, Malaysia, (2016)

    Google Scholar 

  7. Sorli, M., Ferarresi, C., Kolarski, M., Borovac, B., Vucobratovic, M.: Mechanics of Turin parallel robot. Mech. Mach. Theory 32(1), 51–77 (1997)

    Article  MATH  Google Scholar 

  8. Hunt, K.H.: Structural kinematic of in-parallel-actuated robot-arms. J. Mech. Transm. Autom. Des. 105, 705–712 (1983)

    Article  Google Scholar 

  9. Gao, F., Li, W., Zhao, X., Jin, Z., Zhao, H.: New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs. Mech. Mach. Theory 37(11), 1395–1411 (2002)

    Article  MATH  Google Scholar 

  10. Korayem, M.H., Shfei, A.M.: Application of recursive Gibbs-Appell formulation in deriving the motion equation of revolute-prismatic joints. Modares Mech. Eng. 12(3), 1–10 (2012)

    Google Scholar 

  11. Hollerbach, J.M.: A recursive Lagrangian formulation of manipulator dynamics formulation and a comparative study of dynamics formulation complexity. IEEE Trans. Syst. Man Cybern. 10(11), 730–736 (1980)

    Article  MathSciNet  Google Scholar 

  12. Kane, T., Levinson, D.: The use of Kane’s dynamical equations in robotics. Int. J. Robot. Res. 2(3), 3–21 (1983)

    Article  Google Scholar 

  13. Angeles, J., Ma, O., Rojas, A.: An algorithm for the inverse dynamics of N-axis general manipulators using Kane’s equations. Comput. Math. Appl. 17(2), 1545–1561 (1989)

    Article  MATH  Google Scholar 

  14. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  15. Vukobratovic, M., Potkonjak, V.: Applied Dynamics and CAD of Manipulation Robots. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  16. Vossoughi, G., Pendar, H., Heidari, Z., Mohammadi, S.: Assisted passive snake-like robots: conception and dynamic modeling using Gibbs–Appell method. Robotica 26(3), 267–276 (2008)

    Article  Google Scholar 

  17. Korayem, M.H., Shafei, A.M.: Inverse dynamic equation of motion for flexible link manipulators using recursive Gibbs–Appell formulation. In: IEEE International Conference on Robotics and Biomimetics, December 15–18, 2007, pp. 2160–2165 (2007)

    Google Scholar 

  18. Korayem, M.H., Shafei, A.M.: Motion equations proper for forward dynamic of robotic manipulators with flexible links by using recursive Gibbs–Appell formulation. Sci. Iran. Trans. B, Mech. Eng. 16(6), 479–495 (2009)

    MATH  Google Scholar 

  19. Emami, M., Zohoor, H., Sohrabpour, S.: Solving high order nonholonomic systems using Gibbs–Appell method. In: BSG Proceedings 16. The Int. Conf. of Diff. Geom. and Dynamical System, Mangalia, Romania, September (2008)

    Google Scholar 

  20. Staicu, S.: Matrix modeling of inverse dynamics of spatial and planar parallel robots. Multibody Syst. Dyn. 27, 239–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, B., Zhang, L., Yu, J.: Kinematic and dynamic analysis of a novel serial-parallel dynamic simulator. J. Mech. Sci. Technol. 30(11), 5183–5195 (2016)

    Article  Google Scholar 

  22. Zhang, X., Chen, Z., Xu, S., Liu, P.X., Yang, X.: Udwadia–Kalaba approach for three link manipulator dynamics with motion constraints. IEEE Access 7, 49240–49250 (2019)

    Article  Google Scholar 

  23. de Falco, D., Pennestri, E., Vita, L.: An investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation. J. Aerosp. Eng. 22, 365–372 (2009)

    Article  Google Scholar 

  24. Zhao, X., Chen, Y., Zhao, H., et al.: Udwadia–Kalaba equation for constrained mechanical systems: formulation and applications. Chin. J. Mech. Eng. 31, 106 (2018)

    Article  Google Scholar 

  25. Ariff, F., Rambely, A.: Determination of torques at upper limb joints during jumping in Badminton Smash Via Kane’s Method. In: 26th International Conference on Biomechanics in Sports, pp. 73–76 (2008)

    Google Scholar 

  26. Ariff, F., Rambely, A., Ghani, N.: Shoulder’s modeling via Kane’s method: determination of torques in smash activity. In: 5th Kuala Lumpur International Conference on Biomedical Engineering 2011, pp. 207–209 (2011)

    Chapter  Google Scholar 

  27. Tumit, N., et al.: A full body mathematical model of an oil palm harvester. In: The 2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium, Selangor, Malaysia (2015)

    Google Scholar 

  28. Kane, T.R., Levinson, D.A.: Formulation of equations of motion for complex spacecraft. J. Guid. Control 3(11), 99–112 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, G., Gao, J., Yue, H., Zhang, X., Lu, G.: Design and kinematics simulation of parallel robots for ankle rehabilitation. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China, June 25–28 (2006)

    Google Scholar 

  30. Alcocer, W., Vela, L., Blanco, A., Gonzales, J., Oliver, M.: Major trends in the development of ankle rehabilitation devices. Dyna 79(176), 45–55 (2012). ISSN 0012-7353

    Google Scholar 

  31. Chin, L.C., Basah, S.N., Affandi, M., Shah, M.N., Yaacob, S., Juan, Y.E., Din, M.Y.: Home-based ankle rehabilitation system: literature reviews and evaluation. J. Teknol. 79(6), 9–21 (2017)

    Google Scholar 

  32. Chai, X., Shi, Q., Gao, J., Liu, G.: Dynamic modeling and simulation of 3-RSS/S parallel robot for ankle joint rehabilitation. In: International Symposium on Computer Science and Technology (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Enferadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enferadi, J., Jafari, K. A Kane’s based algorithm for closed-form dynamic analysis of a new design of a 3RSS-S spherical parallel manipulator. Multibody Syst Dyn 49, 377–394 (2020). https://doi.org/10.1007/s11044-020-09736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09736-y

Keywords

Navigation