Skip to main content
Log in

Microbial transformation of water-insoluble substrates by two types of novel interface bioprocesses, tacky liquid–liquid interface bioreactor and non-aqueous sporular bioconversion system

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Although microbial transformation has been expected as a substitution technology for organic synthesis, microbial toxicity and water-insolubility of synthetic substrates prevent the practical application of the technology. For these problems, the authors have developed two types of interfacial bioprocesses, solid–liquid and liquid–liquid interface bioreactors and applied the systems to many microbial transformations. In the bioreactors, addition of substrates and accumulation of products were remarkably enhanced based on the toxicity alleviation effect on the interfaces and solubilization of substrates and/or products in an organic phase of the bioreactors. Recently, a novel tacky liquid–liquid interface bioreactor has been developed and applied to actinomycetes and yeasts. Furthermore, a novel bioconversion system with fungal spores in an organic phase has been constructed based on the combination of two facts as follows: (i) the fungal spores are never resting cells and are active ones like the vegetable cells, (ii) the fungal spores have the excellent solvent-tolerance. In this review, the tacky liquid–liquid interface bioreactor (L–L IBRtac) and the non-aqueous sporular bioconversion system with immobilized fungal spores (NASB) are mainly given outlines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

L–L IBRtac :

Tacky liquid–liquid interface bioreactor

NASB:

Non-aqueous sporular bioconversion

TLP:

Organic–aqueous two-liquid-phase system

S–L IBR:

Solid–liquid interface bioreactor

L–L IBR:

Liquid–liquid interface bioreactor

MS:

Floating microsphere

SmC:

Submerged cultivation

Ext-LSI:

Extractive liquid-surface immobilization

L–L IFS:

Liquid–liquid interface screening

6PP:

6-Pentyl-α-pyrone

BM:

Water-insoluble tacky binder material

LSI:

Liquid-surface immobilization

S–L IFC:

Solid–liquid interface cultivation

tert-BuOAc:

Tertiary butyl acetate

References

  • Bar R (1986) Phase toxicity in a water–solvent two-liquid phase microbial system. In: Laane C, Tramper J, Lilly MD (eds) Biocatalysis in organic media. Elsevier, Amsterdam, pp 147–153

    Google Scholar 

  • Bar R (1988) Effect of interface mixing on a water–organic solvent two-liquid phase microbial system: ethanol fermentation. J Chem Tech Biotechnol 43:49–62

    CAS  Google Scholar 

  • Choi WJ, Choi CY, de Bont JAM, Weijers CAGM (1999) Resolution of 1,2-epoxyhexane by Rhodotorula glutinis using a two-phase membrane bioreactor. Appl Microbiol Biotechnol 53:7–11

    CAS  PubMed  Google Scholar 

  • Converti A, Borghi AD, Gandilfi R, Molinari F, Palazzi E, Zilli M (2002) Simplified kinetics and thermodynamics of geraniol acetylation by lyophilized cells of Aspergillus oryzae. Enzyme Microb Technol 30:216–223

    CAS  Google Scholar 

  • Cornmell RJ, Winder CL, Schuler S, Goodacre R, Stephens G (2008) Using a biphasic ionic liquid/water reaction system to improve oxygenase-catalysed biotransformation with whole cells. Green Chem 10:685–691

    CAS  Google Scholar 

  • Craig T, Daugulis AJ (2013) Polymer characterization and optimization of conditions for the enhanced bioproduction of benzaldehyde by Pichia pastoris in a two-phase partitioning bioreactor. Biotechnol Bioeng 110:1098–1105

    CAS  PubMed  Google Scholar 

  • Creuly C, Larroche C, Gros J-B (1992) Bioconversion of fatty acids into methyl ketones by spores of Penicillium roquefortii in a water–organic solvent, two-phase system. Enzyme Microb Technol 14:669–678

    CAS  Google Scholar 

  • Daugulis AJ, McCracken CM (2003) Microbial degradation of high and low molecular weight polyaromatic hydrocarbons in a two-phase partitioning bioreactor by two strains of Sphingomonas sp. Biotechnol Lett 25:1441–1444

    CAS  PubMed  Google Scholar 

  • Doig SD, Boam AT, Leak DI, Livingston AG, Stuckey DC (1998) A membrane bioreactor for biotransformations of hydrophobic molecules. Biotechnol Bioeng 58:587–594

    CAS  PubMed  Google Scholar 

  • Doig SD, Boam AT, Livingston AG, Stuckey DC (1999) Epoxidation of 1,7-octadiene by Pseudomonas oleovorans in a membrane bioreactor. Biotechnol Bioeng 63:601–611

    CAS  PubMed  Google Scholar 

  • Dutta TK, Samanta TB (1999) Bioconversion of progesterone by the activated immobilized conidia of Aspergillus ochraceus TS. Curr Microbiol 39:309–312

    CAS  PubMed  Google Scholar 

  • Faramarzi MA, Yazdi MT, Jahandar H, Amini M, Monsef-Esfahani HR (2006) Studies on the microbial transformation of androst-1,4-diene-3,17-dione with Acremonium strictum. J Int Microbiol Biotechnol 33:725–733

    CAS  Google Scholar 

  • Gao F, Daugulis AJ (2009) Bioproduction of the aroma compound 2-phenylethanol in a solid–liquid two-phase partitioning bioreactor system by Kluyveromyces marxianus. Biotechnol Bioeng 104:332–339

    CAS  PubMed  Google Scholar 

  • Gao P, Wu S, Praveen P, Loh K-C, Li Z (2017) Enhancing productivity for cascade biotrans-formation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor. Appl Microbiol Biotechnol 101:1857–1868

    CAS  PubMed  Google Scholar 

  • Griffin DR, Gainer JL, Carta G (2001) Asymmetric ketone reduction with immobilized yeast in hexane: biocatalyst deactivation and regeneration. Biotechnol Prog 17:304–310

    CAS  PubMed  Google Scholar 

  • Guarro J, Llop C, Aguilar C, Pujol I (1997) Comparison of in vitro antifungal susceptibilities of conidia and hyphae of filamentous fungi. Antimicrob Agents Chemother 41:2760–2762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415

    CAS  Google Scholar 

  • Hocknull MD, Lilly MD (1990) The use of free and immobilized Arthrobacter simplex in organic solvent/aqueous two-liquid-phase reactors. Appl Microbiol Biotechnol 33:148–153

    CAS  PubMed  Google Scholar 

  • Hunkova Z, Fencl A (1978) Toxic effects of fatty acids on yeast cells: possible mechanisms of action. Biotechnol Bioeng 20:1235–1247

    CAS  PubMed  Google Scholar 

  • Hüsken LE, Oomes M, Schroën K, Tramper J, de Bont JAM, Beeftink R (2002) Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water two-phase system. J Biotechnol 96:281–289

    PubMed  Google Scholar 

  • Jaowrski A, Sedlaczek L, Dligonski J, Zajaczkowska E (2007) Inducible nature of the steroid 11-hydroxylases in spores of Cunninghamella elegans (Lender). J Basic Microbiol 25:423–427

    Google Scholar 

  • Katoh O, Sugai T, Ohta H (1994) Application of microbial enantiofacially selective hydrolysis in natural product synthesis. Tetrahedron 5:1935–1944

    CAS  Google Scholar 

  • Kolek T, Szpineter A, Swizdor A (2009) DHEA and pregnenolone d-lactonization pathways in Penicillium camemberti AM83. Steroids 74:859–862

    CAS  PubMed  Google Scholar 

  • Kulkarni AG, Lele SS, Kulkarni PR (1998) Improved adsorption of Aspergillus niger 589 spores on high-density polyethylene for progesterone biotransformation. J Ferment Bioeng 86:510–512

    CAS  Google Scholar 

  • Laane C, Boerne S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87

    CAS  PubMed  Google Scholar 

  • Li G, Li F, Deng L, Fang X, Zou H, Xu K, Li T, Tan G (2013) Increased yield of biotrans-formation of exemestane with β-cyclodextrin complexation technique. Steroids 78:1148–1151

    CAS  PubMed  Google Scholar 

  • Molinari F, Aragozzini F, Cabral JMS, Prazeres DMF (1997) Continuous production of iso-valeraldehyde through extractive bioconversion in a hollow-fiber membrane bioreactor. Enzyme Microb Technol 20:604–611

    CAS  Google Scholar 

  • Murata K (1993) Use of microbial spores as a biocatalyst. Crit Rev Biotechnol 13:173–193

    CAS  PubMed  Google Scholar 

  • Nakahara T, Kawashima H, Sugisawa T, Takamori Y, Tabushi T (1983) Induction and characterization of mutants enhanced in assimilability of n-alkanes in shake cultures from a strain of Candida sp. J Ferment Technol 61:19–23

    CAS  Google Scholar 

  • Oda S (2017) Production of valuable lipophilic compounds by using three types of interface bioprocesses: Solid–liquid interface bioreactor, liquid–liquid interface bioreactor, and extractive liquid-surface immobilization system. J Ole Sci 66:815–831

    CAS  Google Scholar 

  • Oda S, Isshiki K (2007) Liquid-surface immobilization system and liquid–liquid interface bioreactor: Application to fungal hydrolysis. Process Biochem 42:1553–1560

    CAS  Google Scholar 

  • Oda S, Isshiki K (2008) Asymmetric reduction of benzil to (S)-benzoin with Penicillium claviforme IAM 7294 in a liquid–liquid interface bioreactor (L–L IBR). Biosci Biotechnol Biochem 72:1364–1367

    CAS  PubMed  Google Scholar 

  • Oda S, Ohta H (1992a) Microbial transformation on interface between hydrophilic carriers and hydrophobic organic solvents. Biosci Biotech Biochem 56:2041–2045

    CAS  Google Scholar 

  • Oda S, Ohta H (1992b) Alleviation of toxicity of poisonous organic compounds on hydrophilic carrier/hydrophobic organic solvent interface. Biosci Biotech Biochem 56:1515–1517

    CAS  Google Scholar 

  • Oda S, Ohta H (2001) Coupling of fermentation and esterification: microbial esterification of decanoic acid with ethanol produced via fermentation. Biosci Biotechnol Biochem 65:1388–1390

    CAS  PubMed  Google Scholar 

  • Oda S, Ohta H (2002) Biodesulfurization of dibenzothiophene with Rhodococcus erythropolis ATCC 53968 and its mutant in an interface bioreactor. J Biosci Bioeng 94:474–477

    CAS  PubMed  Google Scholar 

  • Oda S, Kato A, Matsudomi N, Ohta H (1994) Production of aliphatic carboxylic acids via microbial oxidation of 1-alkanols with interface bioreactor. J Ferment Bioeng 78:149–154

    CAS  Google Scholar 

  • Oda S, Kato A, Matsudomi N, Ohta H (1996a) Enantioselective oxidation of racemic citronellol with an interface bioreactor. Biosci Biotech Biochem 60:83–87

    CAS  Google Scholar 

  • Oda S, Inada Y, Kobayashi A, Kato A, Matsudomi N, Ohta H (1996b) Coupling of metabolism and bioconversion: microbial esterification of citronellol with acetyl coenzyme A produced via metabolism of glucose in an interface bioreactor. Appl Environ Microbiol 62:2216–2220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oda S, Tanaka J, Ohta H (1998a) Interface bioreactor packed with synthetic polymer pad: Application to hydrolysis of neat 2-ethylhexyl acetate. J Ferment Bioeng 86:84–89

    CAS  Google Scholar 

  • Oda S, Inada Y, Kobayashi A, Ohta H (1998b) Production of ethyl (R)-2-hydroxy-4-phenyl-butanoate via reduction of ethyl 2-oxo-4-phenylbutanoate in an interface bioreactor. Biosci Biotechnol Biochem 62:1762–1767

    CAS  PubMed  Google Scholar 

  • Oda S, Sugai T, Ohta H (1999) Optical resolution of racemic citronellol via a double coupling system in an interface bioreactor. J Biosci Bioeng 87:473–480

    CAS  PubMed  Google Scholar 

  • Oda S, Sugai T, Ohta H (2000) Syntheses of optically active citronellol, citronellal, and citronellic acid by microbial oxidation and double coupling system in an interface bioreactor. Bull Chem Soc Jpn 73:2819–2823

    CAS  Google Scholar 

  • Oda S, Sugai T, Ohta H (2001a) Interface bioreactor: microbial transformation device on an interface between a hydrophilic carrier and a hydrophobic organic solvent. In: Vulfson EN, Halling PJ, Holland HL (eds) Enzyme in nonaqueous solvents. Humana Press, Totowa, pp 401–416

    Google Scholar 

  • Oda S, Sugai T, Ohta H (2001b) Synthesis of methyl ursodeoxycholate via microbial reduction of methyl 7-ketolithocholate with Eubacterium aerofacience JCM 7790 grown on two kinds of carbon and hydride sources, glucose and mannitol. J Biosci Bioeng 91:178–183

    CAS  PubMed  Google Scholar 

  • Oda S, Isshiki K, Ohashi S (2009a) Regio- and stereoselective hydroxylation of n-decane by fungi in a liquid–liquid interface bioreactor (L–L IBR). Bull Chem Soc Jpn 82:105–109

    CAS  Google Scholar 

  • Oda S, Isshiki K, Ohashi S (2009b) Production of 6-pentyl-α-pyrone with Trichoderma atroviride and its mutant in a novel extractive liquid-surface immobilization (Ext-LSI) system. Process Biochem 44:625–630

    CAS  Google Scholar 

  • Oda S, Wakui H, Ohashi S (2011a) Efficient hydrolytic reaction of an acetate ester with fungal lipase in a liquid–liquid interface bioreactor (L–L IBR) using CaCO3-coated ballooned microsphere. J Biosci Bioeng 112:151–153

    CAS  PubMed  Google Scholar 

  • Oda S, Fujinuma K, Inoue A, Ohashi S (2011b) Synthesis of (–)-β-caryophyllene oxide via regio- and stereoselective endocyclic epoxidation of β-caryophyllene with Nemania aenea SF 10099–1 in a liquid–liquid interface bioreactor (L–L IBR). J Biosci Bioeng 112:561–565

    CAS  PubMed  Google Scholar 

  • Oda S, Araki H, Ohashi S (2012a) Derepression of carbon catabolite repression in an extractive liquid-surface immobilization (Ext-LSI) system. J Biosci Bioeng 113:742–745

    CAS  PubMed  Google Scholar 

  • Oda S, Michihata S, Sakamoto N, Horibe H, Kono A, Ohashi S (2012b) Enhancement of 6-pentyl-α-pyrone fermentation activity in an extractive liquid-surface immobilization (Ext-LSI) system by mixing anion-exchange resin microparticles. J Biosci Bioeng 114:596–599

    CAS  PubMed  Google Scholar 

  • Oda S, Sakamoto N, Horibe H, Kono A, Ohashi S (2013) Relationship between interfacial hydrophobicity and hydroxylation activity of fungal cells located on an organic–aqueous interface. J Biosci Bioeng 115:544–546

    CAS  PubMed  Google Scholar 

  • Oda S, Sugitani A, Ohashi S (2014) Solvent-tolerance of fungi located on an interface between an agar plate and an organic solvent. Biosci Biotechnol Biochem 78:1971–1974

    CAS  PubMed  Google Scholar 

  • Oda S, Kameda A, Okanan M, Sakakibara Y, Ohashi S (2015) Discovery of secondary metabolites in an extractive liquid-surface immobilization system and its application to high-throughput interfacial screening of antibiotic-producing fungi. J Antibiot 68:691–697

    CAS  PubMed  Google Scholar 

  • Oda S, Hayashi Y, Kido R (2018) Novel, non-aqueous bioconversion systems using fungal spores. J Oleo Sci 67:1123–1129

    CAS  PubMed  Google Scholar 

  • Oda S, Nomura S, Nakagawa M, Shin-ya K, Kagaya N, Kawahara T (2019a) Solid–liquid interface screening system—application to the screening of antibiotic and cytotoxic substance-producing fungi. Biocontrol Sci 24:47–56

    CAS  PubMed  Google Scholar 

  • Oda S, Nakanishi M, Ishikawa A, Baba T (2019b) Modified liquid–liquid interface cultivation system with floating microspheres and binder micro-pieces for slow-growing or unicellular microorganisms: application to interfacial bioconversions with an actinomycete and yeasts. Process Biochem 80:1–8

    CAS  Google Scholar 

  • Pinheiro HM, Cabral JMS (1991) Effects of solvent molecular toxicity and microenvironment composition on the ∆1 dehydrogenation activity of Arthrobacter simplex cells. Biotechnol Bioeng 37:97–102

    CAS  PubMed  Google Scholar 

  • Prpich GP, Daugulis AJ (2007) A novel solid–liquid two-phase partitioning bioreactor for the enhanced bioproduction of 3-methylcatechol. Biotechnol Bioeng 98:1008–1016

    CAS  PubMed  Google Scholar 

  • Rangel DEN, Braga GUL, Anderson AJ, Roberts DW (2005) Influence of growth environment on tolerance to UV-B radiation, germination speed, and morphology of Metarhizium anisopliae var. acridum conidia. J Invertebr Pathol 90:55–58

    PubMed  Google Scholar 

  • Schindler J (1982) Terpenoids by microbial fermentation. Ind Eng Chem Prod Res Dev 21:537–539

    CAS  Google Scholar 

  • Sugai T, Katoh O, Ohta H (1995) Chemo-enzymatic synthesis of (R, R)-(–)-pyrenophorin. Tetrahedron 51:11987–11998

    CAS  Google Scholar 

  • Svanström A, Melin P (2013) Intracellular trehalase activity is required for development, germination and heat-stress resistance of Aspergillus niger conidia. Res Microbiol 164:91–99

    PubMed  Google Scholar 

  • Tanaka J, Oda S, Ohta H (2001) Synthesis of (S)-ibuprofen via enantioselective degradation of racemic ibuprofen with an isolated yeast, Trichosporon cutaneum KPY 30802, in an interface bioreactor. J Biosci Bioeng 91:314–315

    CAS  PubMed  Google Scholar 

  • Tomei MC, Angelucci DM, Daugulis AJ (2016) Towards a continuous two-phase partitioning bioreactor for xenobiotic removal. J Hazard Mater 317:403–425

    CAS  PubMed  Google Scholar 

  • van Laere A (1986) Resistance of germinating Phycomyces spores to desiccation, freezing and acids. FEMS Microbiol Lett 38:251–256

    Google Scholar 

  • Wolken WAM, van der Werf MJ (2001) Geraniol biotransformation-pathway in spores of Penicillium digitanum. Appl Microbiol Biotechnol 57:731–737

    CAS  PubMed  Google Scholar 

  • Wolken AM, Tramper J, van der Werf MJ (2003) What can spores do for us? Trends Biotechnol 21:338–345

    CAS  PubMed  Google Scholar 

  • Wu D-X, Guan Y-X, Wang H-Q, Yao S-J (2011) 11α-Hydroxylation of 16 α,17-epoxyproge-sterone by Rhizopus nigricans in a biphasic ionic liquid aqueous system. Bioresour Technol 102:9368–9373

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinobu Oda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oda, S. Microbial transformation of water-insoluble substrates by two types of novel interface bioprocesses, tacky liquid–liquid interface bioreactor and non-aqueous sporular bioconversion system. World J Microbiol Biotechnol 36, 57 (2020). https://doi.org/10.1007/s11274-020-02834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02834-1

Keywords

Navigation