Skip to main content
Log in

High-order study of the canard explosion in an aircraft ground dynamics model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A planar system has been proposed in the paper Rankin et al. (Nonlinear Dyn 66:681–688, 2011) to understand the canard explosion detected in a 6D aircraft ground dynamics model. A specific feature of this minimal 2D system is a critical manifold with a single fold and an asymptote. In this paper, we provide a high-order analytical prediction (in fact, up to any wanted order) of the canard explosion in this system. Using a nonlinear time transformation method, we are able to approximate not only the critical parameter value, but also the critical manifold in the phase space. The comparison of our theoretical results with the corresponding numerical continuations shows a very good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benoit, E., Callot, J.F., Diener, F., Diener, M.: Chasse au canard. Collect. Math. 31–32, 37–119 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Zvonkin, A.K., Shubin, M.A.: Non-standard analysis and singular perturbations of ordinary differential equations. Russ. Math. Surv. 39, 69–131 (1984)

    MATH  Google Scholar 

  3. Eckhaus, W.: Relaxation oscillations including a standard chase on French ducks. In: Asymptotic Analysis II. Lecture Notes in Mathematics, vol. 985, pp. 449–494. Springer, Berlin (1983)

  4. Mishchenko, E.F., Kolesov, Y.S., Kolesov, A.Y., Rozov, N.K.: Asymptotic Methods in Singularly Perturbed Systems. Consultants Bureau, New York (1994)

    MATH  Google Scholar 

  5. Dumortier, F., Roussarie, R.: Canard Cycles and Center Manifolds, vol. 577. Memoirs of the American Mathematical Society (1996)

  6. Dumortier, F., Roussarie, R.: Multiple canard cycles in generalized Liénard equations. J. Differ. Equ. 174, 1–29 (2001)

    MATH  Google Scholar 

  7. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Brøns, M.: Bifurcations and instabilities in the Greitzer model for compressor system surge. Math. Eng. Ind. 2, 51–63 (1988)

    MATH  Google Scholar 

  9. Peng, B., Gáspár, V., Showalter, K.: False bifurcations in chemical systems: canards. Philos. Trans. R. Soc. Lond. A 337, 275–289 (1991)

    MATH  Google Scholar 

  10. Brøns, M., Bar-Eli, K.: Canard explosion and excitation in a model of the Belousov–Zhabotinsky reaction. J. Phys. Chem. 95, 8706–8713 (1991)

    Google Scholar 

  11. Freire, E., Gamero, E., Rodríguez-Luis, A.J.: First-order approximation for canard periodic orbits in a van der Pol electronic oscillator. Appl. Math. Lett. 12, 73–78 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Schuster, S., Marhl, M.: Bifurcation analysis of calcium oscillations: time-scale separation, canards, and frequency lowering. J. Biol. Syst. 9, 291–314 (2001)

    Google Scholar 

  13. Moehlis, J.: Canards in a surface oxidation reaction. J. Nonlinear Sci. 12, 319–345 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Brøns, M.: Relaxation oscillations and canards in a nonlinear model of discontinuous plastic deformation in metals at very low temperatures. Proc. R. Soc. A 461, 2289–2302 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Moehlis, J.: Canards for a reduction of the Hodgkin–Huxley equations. J. Math. Biol. 52, 141–153 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Rankin, J., Desroches, M., Krauskopf, B., Lowenberg, M.: Canard cycles in aircraft ground dynamics. Nonlinear Dyn. 66, 681–688 (2011)

    Google Scholar 

  17. Ambrosio, B., Aziz-Alaoui, M.A., Yafia, R.: Canard phenomenon in a slow-fast modified Leslie–Gower model. Math. Biosci. 295, 48–54 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Doedel, E.J., Freire, E., Gamero, E., Rodríguez-Luis, A.J.: An analytical and numerical study of a modified van der Pol oscillator. J. Sound Vib. 256, 755–771 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Rotstein, H.G., Kopell, N., Zhabotinsky, A.M., Epstein, I.R.: Canard phenomenon and localization of oscillations in the Belousov–Zhabotinsky reaction with global feedback. J. Chem. Phys. 119, 8824–8832 (2003)

    Google Scholar 

  20. Shchepakina, E.: Black swans and canards in self-ignition problem. Nonlinear Anal. Real 4, 45–50 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Ginoux, J.M., Llibre, J., Chua, L.O.: Canards from Chua’s circuit. Int. J. Bifurcat. Chaos 23, 1330010 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Ginoux, J.M., Llibre, J.: Canards in memristor’s circuits. Qual. Theory Dyn. Syst. 15, 383–431 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Desroches, M., Krupa, M., Rodrigues, S.: Spike-adding in parabolic bursters: the role of folded-saddle canards. Physica D 331, 58–70 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Steindl, A., Edelmann, J., Plöchl, M.: Limit cycles at oversteer vehicle. Nonlinear Dyn. 99, 313–321 (2020)

    MATH  Google Scholar 

  25. Köksal Ersöz, E., Desroches, M., Mirasso, C.R., Rodrigues, S.: Anticipation via canards in excitable systems. Chaos 29, 013111 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Rotstein, H.G., Coombes, S., Gheorghe, A.M.: Canard-like explosion of limit cycles in two-dimensional piecewise-linear models of FitzHugh–Nagumo type. SIAM J. Appl. Dyn. Syst. 11, 135–180 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Perc, M., Marhl, M.: Different types of bursting calcium oscillations in non-excitable cells. Chaos Solitons Fractals 18, 759–773 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Perc, M., Marhl, M.: Synchronization of regular and chaotic oscillations: the role of local divergence and the slow passage effect. Int. J. Bifurcat. Chaos 14, 2735–2751 (2004)

    MATH  Google Scholar 

  29. Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H.M., Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54, 211–288 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Han, X., Bi, Q.: Slow passage through canard explosion and mixed-mode oscillations in the forced Van der Pol’s equation. Nonlinear Dyn. 68, 275–283 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Desroches, M., Kaper, T.J., Krupa, M.: Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. Chaos 23, 046106 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Zheng, Y., Bao, L.: Time-delay effects on mixed-mode oscillations of modified Chua’s system. Nonlinear Dyn. 80, 1521–1529 (2015)

    Google Scholar 

  33. Kristiansen, K.U.: Blowup for flat slow manifolds. Nonlinearity 30, 2138–2184 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Chan, H.S.Y., Chung, K.W., Xu, Z.: A perturbation-incremental method for strongly non-linear oscillators. Int. J. Nonlinear Mech. 31, 59–72 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Lau, S.L., Cheung, Y.K.: Amplitude incremental variational principle for nonlinear vibration of elastic systems. ASME J. Appl. Mech. 48, 959–964 (1981)

    MATH  Google Scholar 

  36. Lau, S.L., Yuen, S.W.: Solution diagram of nonlinear dynamics systems by the IHB method. J. Sound Vib. 167, 303–316 (1993)

    MATH  Google Scholar 

  37. Cao, Y.Y., Chung, K.W., Xu, J.: A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-incremental method. Nonlinear Dyn. 64, 221–236 (2011)

    MathSciNet  Google Scholar 

  38. Fahsi, A., Belhaq, M.: Analytical approximation of heteroclinic bifurcation in a 1:4 resonance. Int. J. Bifurcat. Chaos 22, 1250294 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Chung, K.W., Cao, Y.Y., Fahsi, A., Belhaq, M.: Analytical approximation of heteroclinic bifurcations in 1:4 resonance using a nonlinear transformation method. Nonlinear Dyn. 78, 2479–2486 (2014)

    Google Scholar 

  40. Qin, B.W., Chung, K.W., Fahsi, A., Belhaq, M.: On the heteroclinic connections in the 1:3 resonance problem. Int. J. Bifurcat. Chaos 26, 1650143 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Qin, B.W., Chung, K.W., Rodríguez-Luis, A.J., Belhaq, M.: Homoclinic-doubling and homoclinic-gluing bifurcations in the Takens–Bogdanov normal form with \(D_4\) symmetry. Chaos 28, 093107 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Rucklidge, A.M.: Global bifurcations in the Takens–Bogdanov normal form with \(D_4\) symmetry near the \(O(2)\) limit. Phys. Lett. A 284, 99–111 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Doedel, E.J., Champneys, A.R., Dercole, F., Fairgrieve, T., Kuznetsov, Y., Oldeman, B., Paffenroth, R., Sandstede, B., Wang, X., Zhang, C.: AUTO-07P: continuation and bifurcation software for ordinary differential equations (with HomCont). Technical report, Concordia University (2012)

  44. Dhooge, A., Govaerts, W., Kuznetsov, Y.A., Meijer, H.G.E., Sautois, B.: New features of the software MatCont for bifurcation analysis of dynamical systems. Math. Comput. Model. Dyn. 14, 147–175 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Algaba, A., Chung, K.W., Qin, B.W., Rodríguez-Luis, A.J.: A nonlinear time transformation method to compute all the coefficients for the homoclinic bifurcation in the quadratic Takens–Bogdanov normal form. Nonlinear Dyn. 97, 979–990 (2019)

    MATH  Google Scholar 

  46. Algaba, A., Chung, K.W., Qin, B.W., Rodríguez-Luis, A.J.: Computation of all the coefficients for the global connections in the \(\mathbb{Z}_2\)-symmetric Takens–Bogdanov normal forms. Commun. Nonlinear Sci. Numer. Simul. 81, 105012 (2020)

    MathSciNet  Google Scholar 

  47. Qin, B.W., Chung, K.W., Algaba, A., Rodríguez-Luis, A.J.: High-order analysis of global bifurcations in a codimension-three Takens–Bogdanov singularity in reversible systems. Int. J. Bifurcat. Chaos 30, 2050017 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Qin, B.W., Chung, K.W., Algaba, A., Rodríguez-Luis, A.J.: Analytical approximation of cuspidal loops using a nonlinear time transformation method. Appl. Math. Comput. 373, 125042 (2020)

    MathSciNet  MATH  Google Scholar 

  49. Algaba, A., Chung, K.W., Qin, B.W., Rodríguez-Luis, A.J.: Analytical approximation of the canard explosion in a van der Pol system with the nonlinear time transformation method. Physica D (2020). https://doi.org/10.1016/j.physd.2020.132384

    Article  MathSciNet  Google Scholar 

  50. Qin, B.W., Chung, K.W., Algaba, A., Rodríguez-Luis, A.J.: High-order analysis of canard explosion in the Brusselator equations. Int. J. Bifurcat. Chaos (2020) (accepted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro J. Rodríguez-Luis.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We thank the reviewers for their careful reading of the manuscript and their constructive remarks. This work has been partially supported by the Ministerio de Economía y Competitividad (project MTM2017-87915-C2-1-P, co-financed with FEDER funds), by the Ministerio de Ciencia, Innovación y Universidades (project PGC2018-096265-B-I00, co-financed with FEDER funds) and by the Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía (FQM-276, TIC-0130, UHU-1260150 and P12-FQM-1658). It has also been supported by the Strategic Research Grant of the City University of Hong Kong (Grant No. 7004848). B.W.Q. is also grateful to the Instituto de Matemáticas de la Universidad de Sevilla (IMUS) and to the Centro de Estudios Avanzados en Física, Matemática y Computación de la Universidad de Huelva (CEAFMC) for collaborating in the financing of his research stays in Seville and Huelva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, BW., Chung, KW., Algaba, A. et al. High-order study of the canard explosion in an aircraft ground dynamics model. Nonlinear Dyn 100, 1079–1090 (2020). https://doi.org/10.1007/s11071-020-05575-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05575-w

Keywords

Navigation