Skip to main content
Log in

Review on Processing and Fluid Transport in Porous Metals with a Focus on Bottleneck Structures

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The dynamics of fluid in porous metals has earned growing attention due to the increasing worldwide research and technological advancement in harnessing, processing and the use of materials. In this study, a review on the wide range of different structures that metal foams can show, the range of processing methods that can be used to make them, leading to these different structures and their fluid flow behaviour are presented herein. The fluid section of this investigation covers fluid flow models, boundary conditions, permeability and Form drag estimations, Reynolds number and friction factor determinations, state-of-the-art knowledge of experimental and predictive results. It is the hope that the extended review on processing and fluid flow across monomodal “bottleneck” metallic structures covered herein would lend itself useful to the processing of enhanced bimodal “bottleneck” structures for fluid flow application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Sourced, Ref. [5]

Fig. 2
Fig. 3
Fig. 4

Sourced from [39]

Fig. 5

Sourced from [33]

Fig. 6

Sourced from [34]

Fig. 7

Sourced from [11]

Fig. 8

Sourced from [61]

Fig. 9

Adapted from [33]

Fig. 10

Sourced from [34]

Similar content being viewed by others

References

  1. P.A. Jorges, J.C. Malcom, Recent-trends in porous sound-absorbing materials. Sound Vib. 44, 12–17 (2010)

    Google Scholar 

  2. B. Koo, Y. Yi, M. Lee, B. Kim, Effect of particle size and forming pressure on pore properties of Fe–Cr–Al porous metal by pressureless sintering. Met. Mater. 23(2), 336–340 (2017)

    Article  CAS  Google Scholar 

  3. J.H. Jung, V.D. Krstic, H.K. Cho, Numerical analysis of effective thermal conductivity associated with microstructural changes of porous SiC as an inert-matrix. Met. Mater. 7(1), 21–26 (2001)

    Article  CAS  Google Scholar 

  4. A.R. Kennedy, Porous Metals and Metal Foams Made from Powders, Powder Metal. (2012). https://doi.org/10.5772/33060

    Article  Google Scholar 

  5. J. Zhou, Porous metallic materials, in Advanced Structural Materials, ed. by W.O. Soboyejo (CRC Press, Taylor & Francis Group, Boca Raton, 2006), p. 22

    Google Scholar 

  6. M.F. Ashby, L.U. Tianjin, Metal foams: a survey. Sci. China Ser. (b) 46(6), 521–530 (2003)

    Article  CAS  Google Scholar 

  7. E.L. Furman, A.B. Finkelstein, M.L. Cherny, The permeability of aluminium foams produced by replicated-casting. Metals 3, 49–57 (2013)

    Article  CAS  Google Scholar 

  8. C.Y. Zhao, Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transf. 55, 3618–3632 (2012)

    Article  CAS  Google Scholar 

  9. A.J. Otaru, H.P. Morvan, A.R. Kennedy, Modelling and optimisation of sound absorption in replicated microcellular metals. Scripta Mater. 150, 152–155 (2018)

    Article  CAS  Google Scholar 

  10. N. Dukhan, Analysis of Brinkman-extended Darcy flow in porous media and experimental verification using metal foam. ASME J. Fluids Eng. 134(7), 071201 (2012)

    Article  CAS  Google Scholar 

  11. A.R. Siddiq, A.R. Kennedy, A novel method for the manufacture of porous structures with multi-component, coated pores. Mater. Lett. 196, 324–327 (2017)

    Article  CAS  Google Scholar 

  12. M.F. Ashby, A. Evans, A.R. Kennedy, The role of oxidation during compaction on the expansion and stability of Al foams made via a PM route. Adv. Eng. Mater. 8, 568–570 (2006)

    Article  CAS  Google Scholar 

  13. P. Habisreuther, N. Djordjevic, N. Zarzalis, Statistical distribution of residence time and tortuosity of flow through open-cell foams. Chem. Eng. Sci. (2009). https://doi.org/10.1016/j.ces.2009.07.033

    Article  Google Scholar 

  14. N. Dukhan, O. Bagci, M. Ozdemir, Experimental flow in various porous media and reconciliation of Forchheimer and Ergun relation. Exp. Thermal Fluid Sci. 57, 425–433 (2014)

    Article  Google Scholar 

  15. P. Ranut, E. Nobile, L. Mancini, High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams. Appl. Thermal Eng. (2013). https://doi.org/10.1016/j.applthermaleng.2013.11.056

    Article  Google Scholar 

  16. F. Garcia-Moreno, Commercial applications of metal foams: their properties and production. Materials 9, 85 (2016)

    Article  CAS  Google Scholar 

  17. J. Banhart, Manufacture, characterization, and application of cellular metals and metal foams. Prog. Mater Sci. 46, 559–632 (2001)

    Article  CAS  Google Scholar 

  18. B.H. Smith, S. Szyniszewski, J.F. Hajjar, Steel foam for structures: a review of applications, manufacturing and material properties. J. Constr. Steel 71, 1–10 (2012)

    Article  Google Scholar 

  19. L.D. Kenny, Mechanical properties of particles stabilized aluminium foam. Mater. Sci. Forum 217–222, 1883–1890 (1996)

    Article  Google Scholar 

  20. O. Prakash, H. Sang, J.D. Embury, Structure and properties of AlSiC foam. Mater. Sci. Eng. A 199(2), 195–203 (1995)

    Article  Google Scholar 

  21. P. Asholt, in Metal Foams and Porous Metal Structures, ed. by J. Banhart, M.F. Ashby, N.A. Fleck (MIT-Verlag, Bremen, 1999), p. 133

  22. L. Ma, Z. Song, Cellular structure of aluminium foams during foaming process of aluminium melt. Scripta Mater. 39(11), 1523 (1998)

    Article  CAS  Google Scholar 

  23. V. Shapovalov, in Porous and Cellular Materials for Structural Applications, vol. 521, ed. by D.S. Schwartz et al. (MRS, Warrendale, 1998), p. 281

  24. F. Baumgartner, I. Duarte, J. Banhart, Industrialization of powder compact foaming process. Adv. Eng. Mater. 2, 168–174 (2000)

    Article  CAS  Google Scholar 

  25. V. Gergely, B. Clyne, The FORMGRIP process: foaming of reinforced metals by gas release in precursors. Adv. Eng. Mater. 2, 175–178 (2000)

    Article  CAS  Google Scholar 

  26. M. Fink, O. Anderson, T. Seidel, A. Schlott, Strongly orthotropic open cell porous metal structures for heat transfer applications. Metals 8, 554 (2018)

    Article  CAS  Google Scholar 

  27. J. Banhart, Metal foams: production and stability. Adv. Eng. Mater. 8, 781–794 (2006)

    Article  CAS  Google Scholar 

  28. Y.Y. Zhao, D.A. Sun, A novel sintering dissolution process for manufacturing Al foams. Script Materialia 44, 106–110 (2001)

    Article  Google Scholar 

  29. M. Bram, C. Stiller, H.P. Buchkremer, D. Stover, H. Bauer, High-porosity titanium, stainless steel and superalloy parts. Adv. Eng. Mater. 2, 196 (2000)

    Article  CAS  Google Scholar 

  30. A.J. Otaru, A.R. Kennedy, The permeability of virtual macroporous structures generated by sphere-packing models: comparison with analytical models. Scripta Mater. 124, 30–33 (2016)

    Article  CAS  Google Scholar 

  31. J.E. Rehder, Manufacturing of Cast Iron with Pre-Reduced Iron Ore Pellets, United State Patent 44011469 (1983)

  32. J. Banhart, J. Baumeister, Deformation characteristics of metal foams. Mater. Sci. 33, 1431–1440 (1998)

    Article  CAS  Google Scholar 

  33. A.J. Otaru, H.P. Morvan, A.R. Kennedy, Measurement and simulation of pressure drop across replicated microcellular aluminium in the Darcy–Forchheimer regime. Acta Mater. 149, 265–275 (2018)

    Article  CAS  Google Scholar 

  34. A.J. Otaru, H.P. Morvan, A.R. Kennedy, Airflow measurement across negatively infiltration processed porous aluminium structures. AIChE J. (2019). https://doi.org/10.1002/aic.16523

    Article  Google Scholar 

  35. T.J. Lu, F. Chen, D. He, Sound absorption of cellular metals with semi-open cells. J. Acoust. Soc. Am. 108(4), 1697–1708 (2000)

    Article  CAS  Google Scholar 

  36. Y. Li, L. Zhendong, F. Han, Airflow resistance and sound absorption behaviour of open-celled aluminium foams with spherical cells. Proc. Mater. Sci. 4, 187–190 (2014)

    Article  CAS  Google Scholar 

  37. R. Goodall, A. Marmottant, L. Salvo, A. Mortensen, Spherical pore replicated microcellular aluminium: processing and influence on properties. Mater. Sci. Eng. A 465, 124–135 (2007)

    Article  CAS  Google Scholar 

  38. B.N. Asmar, P.A. Langston, A.J. Matchett, A generalized mixing index in discrete element method simulation of vibrated particulate beds. Granul. Matter 4(3), 129–138 (2002)

    Article  Google Scholar 

  39. P. Langston, A.R. Kennedy, Discrete element modelling of the packing of spheres and its application to the structure of porous metals made by infiltration of packed beds of NaCl beads. Powder Technol. 268, 210–218 (2014)

    Article  CAS  Google Scholar 

  40. A.J. Otaru, Fluid Flow and Acoustic Absorption in Porous metallic Structures Using Numerical Simulation and Experimentation, Ph.D. thesis, The University of Nottingham, United Kingdom (2018)

  41. Q.Z. Wang, D.M. Lu, C.X. Cui, L.M. Liang, Material science and engineering. J. Mater. Process. Technol. 211, 363 (2011)

    Article  CAS  Google Scholar 

  42. E. Michael, The Dawn of Fluid Dynamics: A Discipline Between Science and Technology (Wiley, Hoboken, 2006), p. ix. ISBN 3-527-40513-5

    Google Scholar 

  43. M.A. Rao, Rheology of Fluid and Semisolid Foods: Principles and Applications, 2nd edn. (Springer, Berlin, 2007), p. 8. ISBN 978-0-387-70929-1

    Book  Google Scholar 

  44. H.K. Versteeg, W. Malasekara, An Introduction to Computational Fluid Dynamics—The Finite Volume Method, 2nd edn. (Pearson Education Limited, London, 2007)

    Google Scholar 

  45. CMI, Clay Mathematic Institute, Millennium Prize Problem (2014). https://www.claymath.org/millennium-problems

  46. D.A. Nield, A. Bejan, Convection in Porous Media, 2nd edn. (Springer, New York, 1992), pp. 8–91

    Book  Google Scholar 

  47. S. Peng, Q. Hu, S. Dultz, M. Zhang, Using x-ray computed tomography pore structure characterization for Berea sandstone: resolution effect. J. Hydrol. 472–473, 254–261 (2012)

    Article  Google Scholar 

  48. K.K. Bodla, J.Y. Murthy, S.V. Garimella, Microtomography-based simulation of transport through open-cell metal foams. Numer. Heat Transf. A Appl. 7, 527–544 (2010)

    Article  CAS  Google Scholar 

  49. G.A. Narsilio, O. Buzzi, S. Fityus, T.S. Yun, D.W. Smith, Upscaling of Navier–Stokes equation in porous media: theoretical, numerical and experimental approach. Comput. Geotech. 36, 1200–1206 (2009)

    Article  Google Scholar 

  50. T.P. De Carvalho, H.P. Morvan, D. Hargreaves, H. Oun, A. Kennedy, Pore-scale numerical investigation of pressure drop behaviour across open-cell metal foams. Transp. Porous Media 117(2), 311–336 (2017)

    Article  CAS  Google Scholar 

  51. S. Whitaker, Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1, 3–25 (1986)

    Article  Google Scholar 

  52. H. Darcy, Les Fotaines Publiques de la Ville de Dijon (Dalmont, Paris, 1856)

    Google Scholar 

  53. Comsol, Introduction to the Acoustic Module, US Patent, 7, 519, 518; 7, 596, 474 and 7, 623, 991 (2015)

  54. M. Le Bars, M.G. Worster, Interfacial conditions between a pure and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550, 151–170 (2006)

    Google Scholar 

  55. H Mifflin, The American Heritage®, (Science Dictionary, 2014)

  56. R.P. Hesketh, Flow Between Parallel Plates-Modified from the COMSOL ChE Library Module (Department of Chemical Engineering, Rowan University, Glassboro, 2008), pp. 3–4

    Google Scholar 

  57. A. Dybbs, R.V. Edwards, A new look at porous media fluid mechanics—Darcy to turbulent, in Fundamentals of Transport Phenomena in Porous Media. NATO ASI Series (Series E: Applied Sciences), vol. 82, ed. by J. Bear, M.Y. Corapcioglu (Springer, Dordrecht, 1984)

    Google Scholar 

  58. A. Bejan, Convection Heat Transfer (Wiley, Hoboken, 1984)

    Google Scholar 

  59. M. Piatek, A. Gancarczyk, M. Iwaniszyn, P.J. Jodlowski, J. Lojewska, A. Kolodziej, Gas-phase flow resistance of metal foams: experiments and modelling. AIChE J. 63(6), 1799–1803 (2017)

    Article  CAS  Google Scholar 

  60. D. Edouard, M. Lacroix, C. Pham, M. Mbodji, C. Pham-Huu, Experimental measurements and multiphase flow models in solid SiC foam beds. AIChE J. 54(11), 2823–2832 (2008)

    Article  CAS  Google Scholar 

  61. J.L. Lage, P.S. Krueger, A. Narasimham, Protocol for measuring permeability and form coefficient of porous media. Phys. Fluids 17, 088101 (2005)

    Article  CAS  Google Scholar 

  62. L. Tadrist, M. Miscevis, O. Rahli, F. Topin, About the use of fibrous materials in compact heat exchangers. Exp. Thermal Fluid Sci. 28, 193–199 (2004)

    Article  CAS  Google Scholar 

  63. N. Dukhan, Metal Foams: Fundamental and Applications (DESTECH Publication, Inc. Technology and Engineering, Lancaster, 2013), pp. 1–310

    Google Scholar 

  64. UAF, Universal Air Filter, (2014). www.uaf.com/frequently_asked_questions

  65. N. Dukhan, C.A. Minjeur, A two-permeability approach for assessing flow properties in cellular metals. J. Porous Mater. 18(2), 417–424 (2010)

    Google Scholar 

  66. B. Antohe, J.L. Lage, D.C. Price, R.M. Weber, Experimental determination of the permeability and inertial coefficients of mechanically compressed aluminium metal layers. ASME J. Fluids Eng. 11, 404–412 (1997)

    Article  Google Scholar 

  67. H. Oun, A.R. Kennedy, Experimental investigation of pressure drop characterization across multilayer porous metal structure. J. Porous Mater. 21, 1133–1141 (2014)

    Article  CAS  Google Scholar 

  68. O. Reutter, E. Smirnova, J. Sauerhering, S. Angel, T. Fend, R. Pitz-Paal, Characterization of air flow through sintered metal foams. ASME J. Fluids Eng. 130(5), 051201 (2008)

    Article  CAS  Google Scholar 

  69. N. Dukhan, R. Picón-Feliciano, A.R. Álvarez-Hernánde, Air flow through compressed and uncompressed aluminum foam: measurements and correlations. ASME J. Fluids Eng. 128(5), 1004–1012 (2006)

    Article  CAS  Google Scholar 

  70. J.J. Lu, A. Hess, M.F. Ashby, Sound absorption of metallic foams. J. Appl. Phys. 99, 07511–07519 (1999)

    Google Scholar 

  71. J.F. Despois, A. Mortensen, Permeability of open-pore microcellular materials. Acta Mater. 53, 1381–1388 (2005)

    Article  CAS  Google Scholar 

  72. A.J. Otaru, Enhancing the sound absorption performance of porous metals using tomography images. Appl. Acoust. 140, 183–189 (2019)

    Article  Google Scholar 

  73. K. Seah, R. Thampuran, S. Teoh, Parametric studies of the mechanical behaviour of porous titanium. Met. Mater. 4(4), 672–675 (1998)

    Article  CAS  Google Scholar 

  74. Y.B. Choi, T. Motoyama, K. Matsugi, G. Sasaki, Influence of the specific surface area of a porous nickel to the intermediate compound generated by reaction of a porous nickel and aluminium. Met. Mater. Int. 20(4), 741–745 (2014)

    Article  CAS  Google Scholar 

  75. Y. Champoux, M.R. Stinson, On acoustical models for sound propagation in rigid frame porous materials and the influence of shape factors. J. Acoust. Soc. Am. 92(2), 1120–1131 (1992)

    Article  Google Scholar 

  76. K. Boomsma, D. Poulikakos, The effect of comparison and pore size variations on the liquid flow characteristics in metal foams. ASME J. Fluids Eng. 124, 263–273 (2002)

    Article  CAS  Google Scholar 

  77. J.P. Du Plessis, S. Wouldberg, Pore-scale derivation of Ergun equation to enhance its adaptability and generalization. Chem. Eng. Sci. 63, 2576–2586 (2008)

    Article  CAS  Google Scholar 

  78. J.M. Coulson, The flow of fluids through granular beds: effects of particle shape and voids in streamline flow. Trans. Inst. Chem. Eng. 27, 237–257 (1949)

    CAS  Google Scholar 

  79. M. Muskat, H.G. Botset, Flow of gas through porous materials. Physics 1, 27–47 (1931)

    Article  Google Scholar 

  80. S. Ergun, Fluid flow through packed column. Chem. Eng. 48, 89–94 (1952)

    CAS  Google Scholar 

  81. I. Kececioglu, Y. Jiang, Flow through porous media of packed spheres saturated with water. ASME J. Fluids Eng. 116, 164–170 (1994)

    Article  CAS  Google Scholar 

  82. D. Edouard, M. Lacroix, C.P. Huu, F. Luck, Pressure drop modelling on solid foam: state-of-the-art correlation. Chem. Eng. J. 144, 299–311 (2008)

    Article  CAS  Google Scholar 

  83. J.P. Bonnet, F. Topin, L. Tadrist, Flow laws in metal foams: compressibility and pore size effects. Trans. Porous Media 73, 149–163 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

OAJ would like to thank the University of Nottingham Dean of Engineering Research Scholarship for International Excellence for providing me with the needed funds and facilities required for the successful completion of this work. Many thanks to Professor Andrew R. Kennedy (Lancaster University, UK) and Professor Herve P. Morvan (University of Nottingham, UK) for their overwhelming contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Otaru.

Ethics declarations

Conflict of interest

The author of this work declares that He has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otaru, A.J. Review on Processing and Fluid Transport in Porous Metals with a Focus on Bottleneck Structures. Met. Mater. Int. 26, 510–525 (2020). https://doi.org/10.1007/s12540-019-00345-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00345-9

Keywords

Navigation