Skip to main content
Log in

Electro-mechanical Degradation Model of Flexible Metal Films Due to Fatigue Damage Accumulation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

An electro-mechanical degradation model is developed to evaluate the electronic and mechanical reliability performance of metal films due to fatigue accumulation. The model establishes the relationship between electrical resistivity and damage, which can be used to predict the change in electrical resistivity and damage evolution of metal films under fatigue loading. Based on the developed model, fatigue damage evolution and change in electrical resistivity simulation of metal films can be implemented to evaluate the electronic and mechanical reliability performance of metal films for the condition where the stress/strain level is heterogeneous. As a case study, fatigue damage evolution and change in electrical resistivity of a copper film on flexible substrate under cyclic loading is numerical analyzed and compared with experiment. It shows that the electro-mechanical degradation model and implemented simulation are effective, and can be used to evaluate the electronic and mechanical reliability performance of metal films due to fatigue accumulation reasonably.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.A. Rogers, Electronics: a diverse printed future. Nature 468(7321), 177 (2010)

    CAS  Google Scholar 

  2. T.G. Woo, I.S. Park, K.H. Jung et al., Effect of N2 plasma treatment on the adhesion of Cu/Ni thin film to polyimide. Met. Mater. Int. 17(5), 789–795 (2011)

    CAS  Google Scholar 

  3. B.I. Noh, J.W. Yoon, S.B. Jung, Effect of Ni–Cr seed layer thickness on the adhesion characteristics of flexible copper clad laminates fabricated using a roll-to-roll process. Met. Mater. Int. 16(5), 779–784 (2010)

    CAS  Google Scholar 

  4. Y. Su, S. Wang, Y.A. Huang et al., Elasticity of fractal inspired interconnects. Small 11(3), 367–373 (2015)

    CAS  Google Scholar 

  5. Y. Zhang, H. Fu, Y. Su et al., Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 61(20), 7816–7827 (2013)

    CAS  Google Scholar 

  6. B. Sun, Z. Li, An efficient computational method for curved interconnects deformation. Eur. J. Mech. A Solids 75, 82–92 (2019)

    Google Scholar 

  7. A. Bag, K.S. Park, S.H. Choi, Effect of the deformation state on the mechanical degradation of Cu metal films on flexible PI substrates during cyclic sliding testing. Met. Mater. Int. 25(1), 45–63 (2019)

    CAS  Google Scholar 

  8. J. Kim, M. Lee, H.J. Shim et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014)

    CAS  Google Scholar 

  9. G. Li, R. Zhu, Y. Yang, Polymer solar cells. Nat. Photonics 6(3), 153 (2012)

    CAS  Google Scholar 

  10. P.M. Beaujuge, J.M.J. Fréchet, Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J. Am. Chem. Soc. 133(50), 20009–20029 (2011)

    CAS  Google Scholar 

  11. D.T. Le, C.J. Jeon, Y.H. Jeong et al., High performance of temperature sensitive thin film fabricated onto flexible substrates. J. Alloys Compd. 686, 982–988 (2016)

    CAS  Google Scholar 

  12. Y.M. Song, Y. Xie, V. Malyarchuk et al., Digital cameras with designs inspired by the arthropod eye. Nature 497(7447), 95 (2013)

    CAS  Google Scholar 

  13. M.J. Cordill, O. Glushko, A. Kleinbichler et al., Microstructural influence on the cyclic electro-mechanical behaviour of ductile films on polymer substrates. Thin Solid Films 644, 166–172 (2017)

    CAS  Google Scholar 

  14. D.Y. Lee, J.H. Song, Fatigue life and plastic deformation behavior of electrodeposited copper thin film under variable amplitude loading. Int. J. Fatigue 38, 1–6 (2012)

    CAS  Google Scholar 

  15. P. Heremans, A.K. Tripathi, A. de Jamblinne de Meux et al., Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications. Adv. Mater. 28(22), 4266–4282 (2016)

    CAS  Google Scholar 

  16. X.M. Luo, G.P. Zhang, Deformation-mechanism dependent stretchability of nanocrystalline gold films on flexible substrates. J. Mater. Res. 32(18), 3516–3523 (2017)

    CAS  Google Scholar 

  17. X.M. Luo, G.P. Zhang, Grain boundary instability dependent fatigue damage behavior in nanoscale gold films on flexible substrates. Mater. Sci. Eng. A 702, 81–86 (2017)

    CAS  Google Scholar 

  18. O. Kraft, R. Schwaiger, P. Wellner, Fatigue in thin films: lifetime and damage formation. Mater. Sci. Eng. A 319, 919–923 (2001)

    Google Scholar 

  19. B.J. Kim, S.Y. Jung, Y. Cho et al., Crack nucleation during mechanical fatigue in thin metal films on flexible substrates. Acta Mater. 61(9), 3473–3481 (2013)

    CAS  Google Scholar 

  20. S. Seo, G. Choi, T.J. Eom et al., Correlation of eddy current responses between fatigue cracks and electrical-discharge-machining notches. Met. Mater. Int. 23(4), 756–763 (2017)

    CAS  Google Scholar 

  21. Y. Yang, N. Yao, B. Imasogie et al., Nanoscale and submicron fatigue crack growth in nickel microbeams. Acta Mater. 55(13), 4305–4315 (2007)

    CAS  Google Scholar 

  22. Y.S. Lee, G.D. Sim, J.S. Bae et al., Tensile and fatigue behavior of polymer supported silver thin films at elevated temperatures. Mater. Lett. 193, 81–84 (2017)

    CAS  Google Scholar 

  23. O. Glushko, A. Klug, E.J.W. List-Kratochvil et al., Relationship between mechanical damage and electrical degradation in polymer-supported metal films subjected to cyclic loading. Mater. Sci. Eng. A 662, 157–161 (2016)

    CAS  Google Scholar 

  24. H.Y. Wan, X.M. Luo, X. Li et al., Nanotwin-enhanced fatigue resistance of ultrathin Ag films for flexible electronics applications. Mater. Sci. Eng. A 676, 421–426 (2016)

    CAS  Google Scholar 

  25. A. Bag, S.H. Choi, Microcrack propagation in Cu metal films on a flexible PI substrate during cyclic-bend testing. Mater. Charact. 129, 186–194 (2017)

    CAS  Google Scholar 

  26. Y. Hwangbo, J.H. Song, Fatigue life and plastic deformation behavior of electrodeposited copper thin films. Mater. Sci. Eng. A 527(9), 2222–2232 (2010)

    Google Scholar 

  27. G.D. Sim, Y. Hwangbo, H.H. Kim et al., Fatigue of polymer-supported Ag thin films. Scr. Mater. 66(11), 915–918 (2012)

    CAS  Google Scholar 

  28. G.D. Sim, Y.S. Lee, S.B. Lee et al., Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films. Mater. Sci. Eng. A 575, 86–93 (2013)

    CAS  Google Scholar 

  29. X.J. Sun, C.C. Wang, J. Zhang et al., Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates. J. Phys. D Appl. Phys. 41(19), 195404 (2008)

    Google Scholar 

  30. D. Wang, C.A. Volkert, O. Kraft, Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng. A 493(1–2), 267–273 (2008)

    Google Scholar 

  31. R. Schwaiger, G. Dehm, O. Kraft, Cyclic deformation of polycrystalline Cu films. Philos. Mag. 83(6), 693–710 (2003)

    CAS  Google Scholar 

  32. S. Eve, N. Huber, A. Last et al., Fatigue behavior of thin Au and Al films on polycarbonate and polymethylmethacrylate for micro-optical components. Thin Solid Films 517(8), 2702–2707 (2009)

    CAS  Google Scholar 

  33. A. Bag, K.S. Park, S.H. Choi, Effects of microcrack evolution on the electrical resistance of Cu thin films on flexible PI substrates during cyclic-bend testing. Met. Mater. Int. 23(4), 673–682 (2017)

    CAS  Google Scholar 

  34. A. Bag, S.H. Choi, Initiation and propagation of microcracks in Cu thin films on flexible substrates through the thickness direction during a cyclic bending test. Mater. Sci. Eng. A 708, 60–67 (2017)

    CAS  Google Scholar 

  35. B. Sun, Z. Li, A multi-scale damage model for fatigue accumulation due to short cracks nucleation and growth. Eng. Fract. Mech. 127, 280–295 (2014)

    Google Scholar 

  36. B. Sun, Y.L. Xu, Z. Li, Multi-scale fatigue model and image-based simulation of collective short cracks evolution process. Comput. Mater. Sci. 117, 24–32 (2016)

    Google Scholar 

  37. B. Sun, Y.L. Xu, Z. Li, Multi-scale model for linking collective behavior of short and long cracks to continuous average fatigue damage. Eng. Fract. Mech. 157, 141–153 (2016)

    Google Scholar 

  38. A. Wimmer, W. Heinz, T. Detzel et al., Cyclic bending experiments on free-standing Cu micron lines observed by electron backscatter diffraction. Acta Mater. 83, 460–469 (2015)

    CAS  Google Scholar 

  39. T. Kondo, X.C. Bi, H. Hirakata et al., Mechanics of fatigue crack initiation in submicron-thick freestanding copper films. Int. J. Fatigue 82, 12–28 (2016)

    CAS  Google Scholar 

  40. T. Kondo, A. Shin, H. Hirakata et al., Fatigue crack propagation properties of submicron-thick freestanding copper films in vacuum environment. Procedia Struct. Integr. 2, 1359–1366 (2016)

    Google Scholar 

  41. J. Lemaitre, A Course on Damage Mechanics (Springer, Berlin, 2012)

    Google Scholar 

  42. K.J. Miller, M.F.E. Ibrahim, Damage accumulation during initiation and short crack growth regimes. Fatigue Fract. Eng. Mater. Struct. 4(3), 263–277 (1981)

    Google Scholar 

  43. J. Fish, Q. Yu, Computational mechanics of fatigue and life predictions for composite materials and structures. Comput. Methods Appl. Mech. Eng. 191, 4827–4849 (2002)

    Google Scholar 

  44. B. Sun, Y.L. Xu, F.Y. Wang et al., Multi-scale fatigue damage prognosis for long-span steel bridges under vehicle loading. Struct. Infrastruct. Eng. 15, 524–538 (2019)

    Google Scholar 

  45. B. Sun, Y.L. Xu, Q. Zhu et al., Concurrent multi-scale fatigue damage evolution simulation method for long-span steel bridges. Int. J. Damage Mech. 28(2), 165–182 (2019)

    Google Scholar 

  46. B. Sun, Y.L. Xu, Q. Zhu et al., Auto-adaptive multiblock cycle jump algorithm for fatigue damage simulation of long-span steel bridges. Fatigue Fract. Eng. Mater. Struct. 42(4), 919–928 (2019)

    Google Scholar 

Download references

Acknowledgements

The works described in this paper are financially supported by Jiangsu Province natural sciences fund subsidization Project (BK20170655), the Fundamental Research Funds for the Central Universities (3205009203) and Zhishan Youth Scholar Program of SEU, to which the authors are most grateful. The authors are very grateful to the reviewers for carefully reading the paper and for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Huang, X. & Li, Z. Electro-mechanical Degradation Model of Flexible Metal Films Due to Fatigue Damage Accumulation. Met. Mater. Int. 26, 501–509 (2020). https://doi.org/10.1007/s12540-019-00351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00351-x

Keywords

Navigation