Skip to main content
Log in

On-demand Direct Design of Polymeric Thermal Actuator by Machine Learning Algorithm

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The design optimization of thermal-driven actuators is a challenging task because the performance depends on multiple materials parameters, structural parameters, and working conditions. In this work, we adopted large scale finite element simulation together with machine learning algorithm to fulfill the on-demand design of thermal actuators. Finite element analysis was used to simulate the performance of thermal actuator with two-layer structure, which generated large amount of dataset by considering the variation of parameters including the moduli, thermal expansion coefficient, sample thickness and length, and temperature. Support vector regression (SVR) was adopted to establish the relationship between multiple input parameters and the resulting contact pressure. Thereafter, a simple interior point algorithm was used to achieve the on-demand design based on the SVR model. The contact pressures of thermal actuator constructed from the optimized parameters deviated less than 15% of the target values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiang, W.; Niu, D.; Liu, H.; Wang, C.; Zhao, T.; Yin, L.; Shi, Y.; Chen, B.; Ding, Y.; Lu, B. Photoresponsive soft-robotic platform: Biomimetic fabrication and remote actuation. Adv. Funct. Mater.2014, 24, 7598–7604.

    Article  CAS  Google Scholar 

  2. Zheng, W. J.; An, N.; Yang, J. H.; Zhou, J.; Chen, Y. M. Tough Alalginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. ACS Appl. Mater. Interfaces2015, 7, 1758–1764.

    Article  CAS  Google Scholar 

  3. Xu, B.; Jiang, H.; Li, H.; Zhang, G.; Zhang, Q. High strength nanocomposite hydrogel bilayer with bidirectional bending and shape switching behaviors for soft actuators. RSC Adv.2015, 5, 13167–13170.

    Article  CAS  Google Scholar 

  4. Haines, C. S.; Lima, M. D.; Li, N.; Spinks, G. M.; Foroughi, J.; Madden, J. D. W.; Kim, S. H.; Fang, S.; de Andrade, M. J.; Göktepe, F., Göktepe, Ö.; Mirvakili, S. M.; Naficy, S.; Lepró, X.; Oh, J.; Kozlov, M. E.; Kim, S. J.; Xu, X.; Swedlove, B. J.; Wallace, G. G.; Baughman, R. H. Artificial muscles from fishing line and sewing thread. Science2014, 343, 868–872.

    Article  CAS  Google Scholar 

  5. Liu, T. Y.; Hu, S. H.; Liu, T. Y.; Liu, D. M.; Chen, S. Y. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir2006, 22, 5974–5978.

    Article  CAS  Google Scholar 

  6. Wang, H.; Wang, Y.; Tee, B. C.; Kim, K.; Lopez, J.; Cai, W.; Bao, Z. Shape-controlled, self-wrapped carbon nanotube 3D electronics. Adv. Sci.2015, 2, 1500103.

    Article  Google Scholar 

  7. Hu, Y.; Chen, W. Externally induced thermal actuation of polymer nanocomposites. Macromol. Chem. Phys.2011, 212, 992–998.

    Article  CAS  Google Scholar 

  8. Kumar, K.; Knie, C.; Bleger, D.; Peletier, M. A.; Friedrich, H.; Hecht, S.; Broer, D. J.; Debije, M. G.; Schenning, A. P. A chaotic selfoscillating sunlight-driven polymer actuator. Nat. Commun.2016, 7, 11975.

  9. Chen, T.; Bakhshi, H.; Liu, L.; Ji, J.; Agarwal, S. Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators. Adv. Funct. Mater.2018, 28, 1800514.

    Article  Google Scholar 

  10. Chen, L.; Weng, M.; Zhang, W.; Zhou, Z.; Zhou, Y.; Xia, D.; Li, J.; Huang, Z.; Liu, C.; Fan, S. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites. Nanoscale2016, 8, 6877–83.

    Article  CAS  Google Scholar 

  11. Wang, C.; Wang, Y.; Yao, Y.; Luo, W.; Wan, J.; Dai, J.; Hitz, E.; Fu, K. K.; Hu, L. A solution-processed high-temperature, flexible, thinfilm actuator. Adv. Mater.2016, 28, 8618–8624.

    Article  CAS  Google Scholar 

  12. Deng, J.; Li, J.; Chen, P.; Fang, X.; Sun, X.; Jiang, Y.; Weng, W.; Wang, B.; Peng, H. Tunable photothermal actuators based on a pre-programmed aligned nanostructure. J. Am. Chem. Soc.2016, 138, 225–230.

    Article  CAS  Google Scholar 

  13. Luo, Z.; Tong, L.; Ma, H. Shape and topology optimization for electrothermomechanical microactuators using level set methods. J. Comput. Phys.2009, 228, 3173–3181.

    Article  CAS  Google Scholar 

  14. Sourmail, T.; Bhadeshia, H. K. D. H.; MacKay, D. J. C. Neural network model of creep strength of austenitic stainless steels. Mater. Sci. Technol.2002, 18, 655–663.

    Article  CAS  Google Scholar 

  15. Suh, C.; Rajan, K. Data mining and informatics for crystal chemistry: establishing measurement techniques for mapping structure-property relationships. Mater. Sci. Technol.2009, 25, 466–471.

    Article  CAS  Google Scholar 

  16. Tang, J. L.; Cai, Q. R.; Liu, Y. J. In Prediction of material mechanical properties with support vector machine. 2010 International Conference on Machine Vision and Human-Machine Interface, MVHI 2010, 2010, pp 592−595.

    Google Scholar 

  17. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Networks1989, 2, 359–366.

    Article  Google Scholar 

  18. Wang, J.; Chen, Q.; Chen, Y. RBF kernel based support vector machine with universal approximation and its application. Lec. Notes. Comput. Sci.2004, 3173, 512–517.

    Article  Google Scholar 

  19. Nagatani, H.; Imou, A. Contact pressure and shear stress analysis on conforming contact problem. J. Adv. Mech. Des. Syst2008, 2, 1055–1066.

    Article  Google Scholar 

  20. Alex, J.; Smola, B. S. L. A tutorial on support vector regression. Stat. Comput.2004, 14, 199–222.

    Article  Google Scholar 

  21. Shergold, O. A.; Fleck, N. A.; Radford, D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int. J. Impact Eng.2006, 32, 1384–1402.

    Article  Google Scholar 

  22. Blokland, R.; Prins, W. Elasticity and structure of chemically crosslinked polyurethanes. J. Polym. Sci., Part A: Polym. Chem.1969, 7, 1595–1618.

    Article  CAS  Google Scholar 

  23. Fan, H.; Wang, J.; Jin, Z. Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer–tannic acid multiple hydrogen bonds. Macromolecules2018, 51, 1696–1705.

    Article  CAS  Google Scholar 

  24. Dizqah, A. M.; Maheri, A.; Busawon, K. An accurate method for the PV model identification based on a genetic algorithm and the interior-point method. Renew. Energy2014, 72, 212–222.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51625303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, BE., Yu, W. On-demand Direct Design of Polymeric Thermal Actuator by Machine Learning Algorithm. Chin J Polym Sci 38, 908–914 (2020). https://doi.org/10.1007/s10118-020-2396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2396-8

Keywords

Navigation