Skip to main content

Advertisement

Log in

An Electrochemically Stable 2D Covalent Organic Framework for High-performance Organic Supercapacitors

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

An electrochemically stable two-dimensional covalent organic framework, PI-COF, has been synthesized by a scalable solvothermal method. PI-COF possesses a highly crystalline structure, well-defined pores, high specific surface area, and cluster macrostructure. Thanks to these features, PI-COF can work as electrode materials in organic supercapacitors, exhibiting a specific capacitance of 163 F/g at 0.5 A/g over a wide potential window of 0–2.5 V. Moreover, PI-COF shows excellent rate performance, which can deliver 96 F/g even at a high current density of 40 A/g. Because of the high capacitance and wide potential window, PI-COF has achieved a superior energy density of 35.7 W·h/kg at a power density of 250 W/kg. Most importantly, due to the remarkable electrochemical stability, the PI-COF based device shows outstanding cycling stability with 84.1% capacitance maintained (137 F/g) after 3.0 × 104 charged/discharged cycles at 1 A/g. This work should shed light on designing new COF-based electrode materials for supercapacitors and other electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nishide, H.; Oyaizu, K. Toward flexible batteries. Science2008, 319, 737–738.

    CAS  PubMed  Google Scholar 

  2. Snow, E.; Perkins, F.; Houser, E.; Badescu, S.; Reinecke, T. Chemical detection with a single-walled carbon nanotube capacitor. Science2005, 307, 1942–1945.

    CAS  PubMed  Google Scholar 

  3. Ceraolo, M. New dynamical models of lead-acid batteries. IEEE Trans. Power Syst.2000, 15, 1184–1190.

    Google Scholar 

  4. Park, S.; Vohs, J. M.; Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature2000, 404, 265.

    CAS  PubMed  Google Scholar 

  5. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. Nanosized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature2000, 407, 496.

    CAS  PubMed  Google Scholar 

  6. Ji, X.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater.2009, 8, 500.

    CAS  PubMed  Google Scholar 

  7. Liu, L.; Yu, Y.; Yan, C.; Li, K.; Zheng, Z. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun.2015, 6, 7260.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Frackowiak, E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys.2007, 9, 1774–1785.

    CAS  PubMed  Google Scholar 

  9. Frackowiak, E.; Béguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon2001, 39, 937–950.

    CAS  Google Scholar 

  10. Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources2006, 157, 11–27.

    CAS  Google Scholar 

  11. Lei, Z.; Christov, N.; Zhao, X. S. Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ. Sci.2011, 4, 1866–1873.

    CAS  Google Scholar 

  12. Stoller, M. D.; Ruoff, R. S. Best practice methods for determining an electrode material's performance for ultracapacitors. Energy Environ. Sci.2010, 3, 1294–1301.

    CAS  Google Scholar 

  13. Pech, D.; Brunet, M.; Durou, H.; Huang, P.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechol.2010, 5, 651.

    CAS  Google Scholar 

  14. Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechol.2011, 6, 232.

    CAS  Google Scholar 

  15. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater.2008, 7, 845.

    CAS  PubMed  Google Scholar 

  16. Meng, Q.; Wang, K.; Guo, W.; Fang, J.; Wei, Z.; She, X. Thread-like supercapacitors based on one-step spun nanocomposite yarns. Small2014, 10, 3187–3193.

    CAS  PubMed  Google Scholar 

  17. Jun, Y.; Zhuangjun, F.; Wei, S.; Guoqing, N.; Tong, W.; Qiang, Z.; Rufan, Z.; Linjie, Z.; Fei, W. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater.2012, 22, 2632–2641.

    Google Scholar 

  18. Meng, Y.; Wang, K.; Zhang, Y.; Wei, Z. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv. Mater.2013, 25, 6985–6990.

    CAS  PubMed  Google Scholar 

  19. Cheng, M.; Meng, Y.; Meng, Q.; Mao, L.; Zhang, M.; Amin, K.; Ahmad, A.; Wu, S.; Wei, Z. A hierarchical porous N-doped carbon electrode with superior rate performance and cycling stability for flexible supercapacitors. Mater. Chem. Front.2018, 2, 986–992.

    CAS  Google Scholar 

  20. Xu, H.; Gao, J.; Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem.2015, 7, 905.

    CAS  PubMed  Google Scholar 

  21. Khattak, A. M.; Sin, H.; Ghazi, Z. A.; He, X.; Liang, B.; Khan, N. A.; Alanagh, H. R.; Iqbal, A.; Li, L.; Tang, Z. Controllable fabrication of redox-active conjugated microporous polymers on reduced graphene oxide for high performance faradaic energy storage. J. Mater. Chem. A2018, 6, 18827–18832.

    CAS  Google Scholar 

  22. Vivekchand, S.; Rout, C. S.; Subrahmanyam, K.; Govindaraj, A.; Rao, C. Graphene-based electrochemical supercapacitors. J. Chem. Sci.2008, 120, 9–13.

    CAS  Google Scholar 

  23. Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor devices based on graphene materials. J. Mater. Chem. C2009, 113, 13103–13107.

    CAS  Google Scholar 

  24. Gomes, V. G. High performance hybrid supercapacitor based on doped zucchini-derived carbon dots and graphene. Mater. Today Energy.2019, 12, 198–207.

    Google Scholar 

  25. Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon2019, 141, 467–480.

    CAS  Google Scholar 

  26. Hao, L.; Ning, J.; Luo, B.; Wang, B.; Zhang, Y.; Tang, Z.; Yang, J.; Thomas, A.; Zhi, L. Structural evolution of 2D microporous covalent triazine-based framework toward the study of highperformance supercapacitors. J. Am. Chem. Soc.2015, 137, 219–225.

    CAS  PubMed  Google Scholar 

  27. Hu, F.; Wang, J.; Hu, S.; Li, L.; Wang, G.; Qiu, J.; Jian, X. Inherent N,O-containing carbon frameworks as electrode materials for high-performance supercapacitors. Nanoscale2016, 8, 16323–16331.

    CAS  PubMed  Google Scholar 

  28. Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev.2013, 42, 3127–3171.

    CAS  PubMed  Google Scholar 

  29. DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruna, H. D.; Dichtel, W. R. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc.2013, 135, 16821–16824.

    CAS  PubMed  Google Scholar 

  30. Boota, M.; Chen, C.; Becuwe, M.; Miao, L.; Gogotsi, Y. Pseudocapacitance and excellent cyclability of 2,5-dimethoxy-1,4-benzoquinone on graphene. Energy Environ. Sci.2016, 9, 2586–2594.

    CAS  Google Scholar 

  31. Zhou, Y.; Wang, B.; Liu, C.; Han, N.; Xu, X.; Zhao, F.; Fan, J.; Li, Y. Polyanthraquinone-based nanostructured electrode material capable of high-performance pseudocapacitive energy storage in aprotic electrolyte. Nano Energy2015, 15, 654–661.

    CAS  Google Scholar 

  32. Chandra, S.; Roy Chowdhury, D.; Addicoat, M.; Heine, T.; Paul, A.; Banerjee, R. Molecular level control of the capacitance of twodimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials. Chem. Mater.2017, 29, 2074–2080.

    CAS  Google Scholar 

  33. Bhanja, P.; Bhunia, K.; Das, S. K.; Pradhan, D.; Kimura, R.; Hijikata, Y.; Irle, S.; Bhaumik, A. A new triazine-based covalent organic framework for high-performance capacitive energy storage. ChemSusChem2017, 10, 921–929.

    CAS  PubMed  Google Scholar 

  34. Khattak, A. M.; Ghazi, Z. A.; Liang, B.; Khan, N. A.; Iqbal, A.; Li, L.; Tang, Z. A redox-active 2D covalent organic framework with pyridine moieties capable of faradic energy storage. J. Mater. Chem. A2016, 4, 16312–16317.

    CAS  Google Scholar 

  35. Liu, S.; Yao, L.; Lu, Y.; Hua, X.; Liu, J.; Yang, Z.; Wei, H.; Mai, Y. Allorganic covalent organic framework/polyaniline composites as stable electrode for high-performance supercapacitors. Mater. Lett.2019, 236, 354–357.

    CAS  Google Scholar 

  36. Li, L.; Lu, F.; Xue, R.; Ma, B.; Li, Q.; Wu, N.; Liu, H.; Yao, W.; Guo, H.; Yang, W. Ultrastable triazine-based covalent organic framework with an interlayer hydrogen bonding for supercapacitor applications. ACS Appl. Mater. Interfaces2019, 11, 26355–26363.

    CAS  PubMed  Google Scholar 

  37. Haldar, S.; Kushwaha, R.; Maity, R.; Vaidhyanathan, R. Pyridine-rich covalent organic frameworks as high-performance solid-state supercapacitors. ACS Mater. Lett.2019, 1, 490–497.

    CAS  Google Scholar 

  38. El-Mahdy, A. F.; Hung, Y. H.; Mansoure, T. H.; Yu, H. H.; Chen, T.; Kuo, S. W. A hollow microtubular triazine-and benzobisoxazolebased covalent organic framework presenting sponge-like shells that functions as a high-performance supercapacitor. Chem. Asian J.2019, 14, 1429–1435.

    CAS  PubMed  Google Scholar 

  39. Khayum M, A.; Vijayakumar, V.; Karak, S.; Kandambeth, S.; Bhadra, M.; Suresh, K.; Acharambath, N.; Kurungot, S.; Banerjee, R. Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces2018, 10, 28139–28146.

    Google Scholar 

  40. Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartschuh, A.; Knochel, P.; Bein, T. A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew. Chem. Int. Ed.2013, 52, 2920–2924.

    CAS  Google Scholar 

  41. Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Sun, W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun.2018, 9, 576.

    PubMed  PubMed Central  Google Scholar 

  42. Das, S. K.; Bhunia, K.; Mallick, A.; Pradhan, A.; Pradhan, D.; Bhaumik, A. A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor. Microporous Mesoporous Mater.2018, 266, 109–116.

    CAS  Google Scholar 

  43. Choi, J.; Ko, J. H.; Kang, C. W.; Lee, S. M.; Kim, H. J.; Ko, Y. J.; Yang, M.; Son, S. U. Enhanced redox activity of a hollow conjugated microporous polymer through the generation of carbonyl groups by carbonylative Sonogashira coupling. J. Mater. Chem. A2018, 6, 6233–6237.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Science and Technology of China (No. 2012CB933403), Beijing Natural Science Foundation (No. 2182086), the National Natural Science Foundation of China (Nos. 51425302 and 51302045), CAS-TWAS President's PhD Fellowship program, the Beijing Municipal Science and Technology Commission (No. Z121100006812003), and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Jie Zhi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, R., Badshah, A., Ma, YJ. et al. An Electrochemically Stable 2D Covalent Organic Framework for High-performance Organic Supercapacitors. Chin J Polym Sci 38, 558–564 (2020). https://doi.org/10.1007/s10118-020-2412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2412-z

Keywords

Navigation