Skip to main content
Log in

Density and Viscosity for Binary Mixtures of the Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate with 2-Propanol, N,N-Dimethylacetamide and N,N-Dimethylformamide at 293.15–323.15 K: Experimental and PC-SAFT Modeling

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

For three binary mixtures composed of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) with 2-propanol, N,N‑dimethylacetamide (DMA) and N,N‑dimethylformamide (DMF), the values of the experimental density and viscosity over the whole composition range for T = (293.15 to 323.15 K) are reported. Excess molar volume \(\mathop V\nolimits_{{\text{m}}}^{{\text{E}}}\), partial molar volume \(\overline{{V_{i} }}\), and the deviation in viscosity \(\Delta \eta\) are calculated and explained in order to clarify the intermolecular interactions among the species in the mixtures. For all of the binary mixtures, the negative values of \(\mathop V\nolimits_{{\text{m}}}^{{\text{E}}}\) and \(\Delta \eta\) were fitted with the Redlich–Kister polynomial function. An increase in temperature decreases the values of \(\mathop V\nolimits_{{\text{m}}}^{{\text{E}}}\) and increases the values of \(\Delta \eta\). The results have been discussed regarding binary interaction forces and the formation of a complex between dissimilar molecules. For the correlation and prediction of the binary system densities, perturbed chain statistical associating fluid theory (PC-SAFT) was used. The results obtained from this theory are consistent with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A k :

Adjustable coefficients, correlated by Eq. 2

a :

Helmholtz energy (J)

ai, bi :

Coefficients of power series of density I1, I2

C 1 :

Compressibility expression

d :

Temperature dependent segment diameter

\(g_{{ij}}^{{\text{hs}}}\) :

Radial pair distribution function

I1, I2 :

Power series of density

k :

Boltzmann constant

k ij :

Adjustable parameter

M :

Association sites per molecule

m i :

Number of segments per chain

\(\bar{m}\) :

Average segment number

N :

Number of experimental points

OF :

Objective function

P :

Pressure (Pa)

p :

Number of parameters Ak in Eq. 2

T :

Absolute temperature (K)

V m :

Molar volume

\(X_{\text{m}}^{\text{E}}\) :

Stands for \(V_{\text{m}}^{\text{E}} \;{\text{or}}\;\Delta \eta\)

X A :

Mole fraction of molecules not bonded at site A

x :

Mole fraction

AB :

Association strength between two sites A, B

\(\varepsilon /k\) :

Dispersion energy for each segment (J)

ε AB :

Energy of association between two sites A, B

\(\Gamma\) :

Reduced density

η :

Deviation in viscosity

η :

Viscosity

κ AB :

Volume of association

ρ :

Molar density

s :

Standard deviation

σ :

Segment diameter (Å)

Ω :

Density of binary mixtures

\(\zeta _{n}\) :

Parameters of Eq. 10, n = 0, 1, 2, 3

assoc:

Association

calc:

Calculated

disp:

Dispersion

exp:

Experimental

E :

Excess

hc:

Hard chain

hs:

Hard sphere

res:

Residual

sys:

System

i, j :

Pure components

ij :

Cross parameters for unlike pairs

l :

Ionic liquid

References

  1. Reichardt, C.: Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem. 7, 339–351 (2005)

    CAS  Google Scholar 

  2. Jacquemin, J., Husson, P., Padua, A., Majer, V.: Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8, 172–180 (2006)

    CAS  Google Scholar 

  3. Heintz, A.: Recent developments in thermodynamics and thermophysics of nonaqueous mixtures containing ionic liquids A review. J. Chem. Thermodyn. 37, 525–535 (2005)

    CAS  Google Scholar 

  4. Moosavi, M., Daneshvar, A.: Synergistic effects and specific molecular interactions in the binary mixtures of [bmim][BF4] and poly(ethylene glycol)s. J. Mol. Liq. 225, 810–821 (2017)

    CAS  Google Scholar 

  5. Smith, A.M., Lee, A.A., Perkins, S.: Switching the structural force in ionic liquid–solvent mixtures by varying composition. Phys. Rev. Lett. 118, 096002 (2017)

    PubMed  Google Scholar 

  6. Mancini, P.M., Fortunato, G.G., Vottero, L.R.: Molecular solvent/ionic liquid binary mixtures: designing solvents based on the determination of their microscopic properties. Phys. Chem. Liq. 42, 625–632 (2004)

    CAS  Google Scholar 

  7. Young, G., Nippgen, F., Titterbrandt, S., Cooney, M.J.: Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep. Purif. Technol. 72, 118–121 (2010)

    CAS  Google Scholar 

  8. Boruń, A., Bald, A.: Conductometric studies of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate in N,N-dimethylformamide at temperatures from (283.15 to 318.15) K. J. Chem. Eng. Data 57, 475–481 (2012)

    Google Scholar 

  9. Boruń, A.: Conductometric studies of [emim][BF4] and [bmim][BF4] in propan-2-ol. Association of ionic liquids in alcohols. J. Mol. Liq. 240, 717–722 (2017)

    Google Scholar 

  10. Bešter-Rogač, M., Hunger, J., Stoppa, A., Buchner, R.: Molar conductivities and association of 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium tetrafluoroborate in methanol and DMSO. J. Chem. Eng. Data 55, 1799–1803 (2010)

    Google Scholar 

  11. Jiang, H., Zhao, Y., Wang, J., Zhao, F., Liu, R., Hu, Y.: Density and surface tension of pure ionic liquid 1-butyl-3-methyl-imidazolium l-lactate and its binary mixture with alcohol and water. J. Chem. Thermodyn. 64, 1–13 (2013)

    CAS  Google Scholar 

  12. Rao, S.G., Mohan, T.M., Krishna, T.V., Rao, B.S.: Volumetric properties of 1-butyl-3- methylimidazolium tetrafluoroborate and 2-pyrrolidone from T = (298.15 to 323.15) K at atmospheric pressure. J. Chem. Thermodyn. 94, 127–137 (2016)

    Google Scholar 

  13. Shiflett, M.B., Yokozeki, A.: Solubilities and diffusivities of carbon dioxide in ionic liquids: [bmim][PF6] and [bmim][BF4]. Ind. Eng. Chem. Res. 44, 4453–4464 (2005)

    CAS  Google Scholar 

  14. Lei, Z., Qi, X., Zhu, J., Li, Q., Chen, B.: Solubility of CO2 in acetone, 1-butyl-3-methylimidazolium tetrafluoroborate, and their mixtures. J. Chem. Eng. Data 57, 3458–3466 (2012)

    CAS  Google Scholar 

  15. Safarov, J., Sperlich, C., Namazova, A., Aliyev, A., Tuma, D., Shahverdiyev, A., Hassel, E.: Carbon dioxide solubility in 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrachloroferrate over an extended range of temperature and pressure. Fluid Phase Equilibr. 467, 45–60 (2018)

    CAS  Google Scholar 

  16. Afzal, W., Liu, X.Y., Prausnitz, J.M.: Solubilities of some gases in four immidazolium-based ionic liquids. J. Chem. Thermodyn. 63, 88–94 (2013)

    CAS  Google Scholar 

  17. Jacquemin, J., Gomes, M.F.C., Husson, P., Majer, V.: Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric. J. Chem. Thermodyn. 38, 490–502 (2006)

    CAS  Google Scholar 

  18. Jacquemin, J., Husson, P., Majer, V., Gomes, M.F.C.: Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate. Fluid Phase Equilibr. 240, 87–95 (2006)

    CAS  Google Scholar 

  19. Karpińska, M., Wlazło, M., Domańska, U.: The ethylbenzene/styrene preferential separation with ionic liquids in liquid–liquid extraction. J. Solution Chem. 47, 1578–1596 (2018)

    Google Scholar 

  20. Sas, O., Domínguez, I., González, B., Domínguez, Á.: Liquid-liquid extraction of phenolic compounds from water using ionic liquids: literature review and new experimental data using [C2mim]FSI. J. Environ. Manage. 228, 475–482 (2018)

    PubMed  CAS  Google Scholar 

  21. Berthod, A., Ruiz-Ángel, M.J., Carda-Broch, S.: Recent advances on ionic liquid uses in separation techniques. J. Chromatogr. A 1559, 2–16 (2018)

    PubMed  CAS  Google Scholar 

  22. Liu, F., Liu, S., Feng, Q., Zhuang, S., Zhang, J., Bu, P.: Electrochemical synthesis of dimethyl carbonate with carbon dioxide in 1-butyl-3-methylimidazoliumtetrafluoroborate on indium electrode. Int. J. Electrochem. Sci. 7, 4381–4387 (2012)

    CAS  Google Scholar 

  23. Starykevich, M., Lisenkov, A.D., Salak, A.N., Ferreira, M.G.S., Zheludkevich, M.L.: Electrodeposition of zinc nanorods from ionic liquid into porous anodic alumina. ChemElectroChem. 1, 1484–1487 (2014)

    CAS  Google Scholar 

  24. Miao, Y., Siri-Nguan, N., Sornchamni, T., Jovanovic, G.N., Yokochi, A.F.: CO2 reduction in wet ionic liquid solution in microscale-based electrochemical reactor. Chem. Eng. J. 333, 300–309 (2018)

    CAS  Google Scholar 

  25. Feng, Q., Tan, G., Li, Y., Zeng, W., Yan, W.: Electrocatalytic carboxylation of benzoyl bromide with CO2 in ionic liquid 1-butyl-3-methylimidazoliumtetrafluoborate to methyl phenyl glyoxylate. Asian J. Chem. 26, 3241–3242 (2014)

    CAS  Google Scholar 

  26. Ma, R., Xia, B.Y., Zhou, Y., Li, P., Chen, Y., Liu, Q., Wang, J.: Ionic liquid-assisted synthesis of dual-doped graphene as efficient electrocatalysts for oxygen reduction. Carbon 102, 58–65 (2016)

    CAS  Google Scholar 

  27. Zhai, W., Zhu, H., Wang, L., Yang, H.: Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [bmim]BF4 for lithium ion batteries. Electrochim. Acta 133, 623–630 (2014)

    CAS  Google Scholar 

  28. Galiote, N.A., Jeong, S., Morais, W.G., Passerini, S., Huguenin, F.: The role of ionic liquid in oxygen reduction reaction for lithium-air batteries. Electrochim. Acta 247, 610–616 (2017)

    CAS  Google Scholar 

  29. Le, L.T.M., Vo, T.D., Ngo, K.H.P., Okada, S., Alloin, F., Garg, A., Le, P.M.L.: Mixing ionic liquids and ethylene carbonate as safe electrolytes for lithium-ion batteries. J. Mol. Liq. 271, 769–777 (2018)

    CAS  Google Scholar 

  30. Li, T., Cui, Z., Yuan, W., Li, C.M.: Ionic liquid functionalized carbon nanotubes: metal-free electrocatalyst for hydrogen evolution reaction. RSC Adv. 6, 12792–12796 (2016)

    CAS  Google Scholar 

  31. Liu, H., Yu, H.: Ionic liquids for electrochemical energy storage devices applications. J. Mater. Sci. Tech. 35, 674–686 (2019)

    Google Scholar 

  32. Freemantle, M.: An Introduction to Ionic Liquids. RSC Publishing, Cambridge (2009)

    Google Scholar 

  33. Mele, A., Tran, C.D., De Paoli Lacerda, S.H.: The structure of a room-temperature ionic liquid with and without trace amounts of water: the role of C-H···O and C-H···F interactions in 1-n-butyl-3-methylimidazolium tetrafluoroborate. Angew. Chem. Int. Ed. 42, 4364–4366 (2003)

    CAS  Google Scholar 

  34. Freire, M.G., Neves, C.M.S.S., Marrucho, I.M., Coutinho, J.A.P., Fernandes, A.M.: Hydrolysis of tetrafluoroborate and hexafluorophosphate counter Ions in imidazolium-based ionic liquids. J. Phys. Chem. A 114, 3744–3749 (2010)

    PubMed  CAS  Google Scholar 

  35. Tian, S., Hou, Y., Wu, W., Ren, S., Pang, K.: Physical properties of 1-butyl-3-methylimidazolium tetrafluoroborate/N-methyl-2-pyrrolidone mixtures and the solubility of CO2 in the system at elevated pressures. J. Chem. Eng. Data 57, 756–763 (2012)

    CAS  Google Scholar 

  36. Haghtalab, A., Shojaeian, A.: Volumetric and viscometric behaviour of the binary systems of N-methyldiethanolamine and diethanolamine with 1-butyl-3-methylimidazolium acetate at various temperatures. J. Chem. Thermodyn. 68, 128–137 (2014)

    CAS  Google Scholar 

  37. Rao, V.S., Krishna, T.V., Mohan, T.M., Rao, P.M.: Partial molar volumes and partial molar isentropic compressibilities of 1-butyl-3-methylimidazolium tetrafluoroborate + N-methylaniline binary mixture at temperatures T = (293.15 to 323.15) K and atmospheric pressure. J. Mol. Liq. 220, 813–822 (2016)

    CAS  Google Scholar 

  38. Khachatrian, A.A., Varfolomeev, M.A., Akhmadeev, B.S.: Enthalpies of solution of 1-ethyl- and 1-butyl-3-methylimidazolium based ionic liquids in tetrahydrofuran and chloroform at 298.15 K: thermochemical proton acceptor scale of anions. Thermochim. Acta 641, 71–78 (2016)

    CAS  Google Scholar 

  39. Boruń, A., Bald, A.: Triple-ion formation in solutions of [emim][BF4] and [bmim][BF4] in dichloromethane at various temperatures. A new method of analysis of conductivity data. Int. J. Electrochem. Sci. 11, 7714–7725 (2016)

    Google Scholar 

  40. Khachatrian, A.A., Shamsutdinova, Z.I., Varfolomeev, M.A.: Enthalpies of solution and enthalpies of solvation of chloro- and nitro-substituted benzenes in 1-butyl-3-methyl imidazolium based ionic liquids at 298.15 K: additivity of group contributions. Thermochim. Acta 645, 1–6 (2016)

    CAS  Google Scholar 

  41. Khachatrian, A.A., Shamsutdinova, Z.I., Varfolomeev, M.A.: Group additivity approach for determination of solvation enthalpies of aromatic compounds in 1-butyl-3-methylimidazolium tetrafluoroborate based on solution calorimetry data. J. Mol. Liq. 236, 278–282 (2017)

    CAS  Google Scholar 

  42. Chu, C., Zhang, F., Zhu, C., Fu, T., Ma, Y.: Mass transfer characteristics of CO2 absorption into 1-butyl-3-methylimidazolium tetrafluoroborate aqueous solution in microchannel. Int. J. Heat Mass Trans. 128, 1064–1071 (2019)

    CAS  Google Scholar 

  43. Liu, Q., Chen, X., Guo, Y., Han, C., Li, J., Jia, L., Wei, X.: Thermodynamic study of the aqueous two-phase systems of 1-butyl-3-methylimidazolium tetrafluoroborate and sodium dodecyl benzenesulfonate. J. Mol. Liq. 279, 18–22 (2019)

    CAS  Google Scholar 

  44. Zheng, Y.Z., Zhou, Y., Deng, G., Guo, R., Chen, D.F.: The structure and hydrogen-bond behaviors of binary systems containing ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and methanol/ethanol. Spectrochim. Acta A 223, 117312 (2019)

    CAS  Google Scholar 

  45. Miranda, A.D., Gallo, M., Domínguez, J.M., Sánchez-Badillo, J., Martínez-Palou, R.: Experimental and theoretical assessment of the interactions of ionic liquids (ILs) with fluoridated compounds (HF, R-F) in organic medium. J. Mol. Liq. 276, 779–793 (2019)

    CAS  Google Scholar 

  46. Xiao, M., Liu, H., Gao, H., Olson, W., Liang, Z.: CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine. Appl. Energy 235, 311–319 (2019)

    CAS  Google Scholar 

  47. Li, J.L., Zhu, H., Peng, C.J., Liu, H.L.: Influence of binary ionic liquid mixtures of [Bmim][Cl] and [Bmim][BF4] on isobaric vapor-liquid equilibrium of acetonitrile + water at atmospheric pressure. J. Mol. Liq. 284, 675–681 (2019)

    CAS  Google Scholar 

  48. Heydarian, S., Almasi, M., Saadati, Z.: Calculation of Kirkwood-Buff integrals for binary mixtures of 1-butyl-3-methylimidazolium nitrate ionic liquid and alcohols at 298.15 K. J. Mol. Liq. 275, 122–125 (2019)

    CAS  Google Scholar 

  49. Tariq, M., Forte, P.A.S., Gomes, M.F.C., Lopes, J.N.C., Rebelo, L.P.N.: Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion. J. Chem. Thermodyn. 41, 790–798 (2009)

    CAS  Google Scholar 

  50. Paduszynski, K., Królikowski, M., Domańska, U.: Excess enthalpies of mixing of piperidinium ionic liquids with short-chain alcohols: measurements and PC-SAFT modeling. J. Phys. Chem. B 117, 3884–3891 (2013)

    PubMed  CAS  Google Scholar 

  51. Liu, W., Zhao, T., Zhang, Y., Wang, H., Yu, M.: The physical properties of aqueous solutions of the ionic liquid [Bmim][BF4]. J. Solution Chem. 35, 1337–1346 (2006)

    Google Scholar 

  52. Huo, Y., Xia, S., Ma, P.: Solubility of alcohols and aromatic compounds in imidazolium-based ionic liquids. J. Chem. Eng. Data 53, 2535–2539 (2008)

    CAS  Google Scholar 

  53. Chaudhary, G.R., Bansal, S., Mehta, S.K., Ahluwalia, A.S.: Thermophysical and spectroscopic studies of pure 1-butyl-3-methylimidazolium tetrafluoroborate and its aqueous mixtures. J. Solution Chem. 43, 340–359 (2014)

    CAS  Google Scholar 

  54. Gao, J., Wagner, N.J.: Non-ideal viscosity and excess molar volume of mixtures of 1-butyl-3-methylimidazolium tetrauoroborate ([C4mim][BF4]) with water. J. Mol. Liq. 223, 678–686 (2016)

    CAS  Google Scholar 

  55. Yin, Y., Zhu, C., Ma, Y.: Volumetric and viscometric properties of binary and ternary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate, monoethanolamine and water. J. Chem. Thermodyn. 102, 413–428 (2016)

    CAS  Google Scholar 

  56. Navarro, P., Larriba, M., García, S., García, J., Rodríguez, F.: Physical properties of binary and ternary mixtures of 2-propanol, water, and 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. J. Chem. Eng. Data 57, 1165–1173 (2012)

    CAS  Google Scholar 

  57. Wang, J., Tian, Y., Zhao, Y., Zhuo, K.A.: Volumetric and viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, 2-butanone and N,N-dimethylformamide. Green Chem. 5, 618–622 (2003)

    CAS  Google Scholar 

  58. Shekaari, H., Zafarani-Moattar, M.T.: Volumetric properties of the ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, in organic solvents at T = 298.15 K. Int. J. Thermophys. 29, 534–545 (2008)

    CAS  Google Scholar 

  59. Wu, J., Chen, Y., Su, C.: Density and viscosity of ionic liquid binary mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate with acetonitrile, N,N-dimethylacetamide, methanol, and N-methyl-2-pyrrolidone. J. Solution Chem. 44, 395–412 (2015)

    CAS  Google Scholar 

  60. Wu, J.Y., Chen, Y.P., Su, C.S.: The densities and viscosities of a binary liquid mixture of 1-n-butyl-3-methylimidazolium tetrafluoroborate, ([Bmim][BF4]) with acetone, methyl ethyl ketone and N,N-dimethylformamide, at 303.15 to 333.15 K. J. Taiwan Inst. Chem. Eng. 45, 2205–2211 (2014)

    CAS  Google Scholar 

  61. Harris, K.R., Kanakubo, M., Woolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J. Chem. Eng. Data 52, 2425–2430 (2007)

    CAS  Google Scholar 

  62. Pang, F., Seng, C., Teng, T., Ibrahim, M.H.: Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 K to 333.15 K. J. Mol. Liq. 136, 71–78 (2007)

    CAS  Google Scholar 

  63. Zarei, H., Golroudbari, A.S., Behroozi, M.: Experimental studies on volumetric and viscometric properties of binary and ternary mixtures of N,N-dimethylacetamide, N-methylformamide and propane-1,2-diol at different temperatures. J. Mol. Liq. 187, 260–265 (2013)

    CAS  Google Scholar 

  64. Almasi, M.: Thermodynamic properties of binary mixtures containing N, N-dimethylformamide + 2-alkanol: cubic and statistical associating fluid theory-based equation of state analysis. J. Taiwan Inst. Chem. Eng. 45, 365–371 (2014)

    CAS  Google Scholar 

  65. Redlich, O.J., Kister, A.T.: Thermodynamic of nonelectrolyte solutions: algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)

    Google Scholar 

  66. Lide, R.D.: Handbook of Chemistry and Physics, pp. 8180–8184. CRC Press, Boca Raton (2000)

    Google Scholar 

  67. Gross, J., Sadowski, G.: Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260 (2001)

    CAS  Google Scholar 

  68. Gross, J., Sadowski, G.: Application of the perturbed-chain SAFT equation of state to associating systems. Ind. Eng. Chem. Res. 41, 5510–5515 (2002)

    CAS  Google Scholar 

  69. Zhang, S., Zhou, Q., Lu, X., Song, Y., Wang, X.: Physicochemical properties of ionic liquid mixtures. Springer, Dordrecht (2016)

    Google Scholar 

  70. Chen, Y., Sun, Y., Li, Z., Wang, R., Hou, A., Yang, F.: Volumetric properties of binary mixtures of ionic liquid with tributyl phosphate and dimethyl carbonate. J. Chem. Thermodyn. 123, 165–173 (2018)

    CAS  Google Scholar 

  71. Pandit, S.A., Rather, M.A., Bhat, S.A., Rather, G.M., Bhat, M.A.: Influence of the anion on the equilibrium and transport properties of 1-butyl-3-methylimidazolium based room temperature ionic liquids. J. Solution Chem. 45, 1641–1658 (2016)

    CAS  Google Scholar 

  72. Pal, A., Kumar, B.: Volumetric and acoustic properties of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] with alkoxyalkanols at different temperatures. J. Chem. Eng. Data 57, 688–695 (2012)

    CAS  Google Scholar 

  73. Zhang, Y., Zhang, T., Gan, P., Li, H., Zhang, M., Jin, K., Tang, S.: Solubility of isobutane in ionic liquids [Bmim][PF6], [Bmim][BF4], and [Bmim][Tf2N]. J. Chem. Eng. Data 60, 1706–1714 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrnoosh Karimkhani.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10953_2020_967_MOESM1_ESM.doc

Excess molar volumes, viscosity deviations, coefficients of the Redlich-Kister equation and adjustable parameters of the PC-SAFT model along with the standard deviation values. Supplementary file1 (DOC 326 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkoohaki, B., Karimkhani, M., Almasi, M. et al. Density and Viscosity for Binary Mixtures of the Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate with 2-Propanol, N,N-Dimethylacetamide and N,N-Dimethylformamide at 293.15–323.15 K: Experimental and PC-SAFT Modeling. J Solution Chem 49, 405–421 (2020). https://doi.org/10.1007/s10953-020-00967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00967-3

Keywords

Navigation