Skip to main content
Log in

Facile fabrication of porous open-cell polymer structures from sacrificial “natural templates” and composite resins

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this paper, we investigate several types of “natural or bio sourced templates” (sugar, salt, bone, coral, PLA 3D-printed scaffolds) for a the simple elaboration of macro porous thermoplastic or thermosetting polymers, especially based on resins commonly used in composites manufacturing. Open-cell, macro porous polymer foams are obtained from resin impregnation of the template. The process consists of 3 simple steps: (a) impregnation (infiltration/infusion) of the template, (b) polymerization of the resin, (c) removal of template, mainly by water. We compared several resins and showed that a low viscosity and a sufficient wettability enable fast impregnation of templates, where impregnation times are < 4 min for samples on 10 to 30 mm thicknesses. The resulting polymeric porous structure is the overall replication of the template, exhibiting mainly open pores in the range of 100 to 500 μm, and densities from 0.25 to 0.4 g cm−3. Such open foams behave as sponges and can (re) absorb liquids either polar (water), alcohols or non polar liquids such as silicon oil, which are filling the entire void volume. We proved the feasibility of an easy and fast impregnation by composite resins to provide either rigid or soft porous polymers (or ‘foams’) that can be further chemically modified. On the other side, before polymerization, the introduction of a functional additive to the reactive infusion formulation, provides homogeneously functionalized foams. Here an impact modifier is tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Design and preparation of porous polymers. Chem. Rev. 112, 3959–4015 (2012)

    Article  CAS  Google Scholar 

  2. X.-Y. Yang, L.-H. Chen, Y. Li, J.-C. Rooke, C. Sanchez, B.-L. Su, Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 46, 481 (2017)

    Article  CAS  Google Scholar 

  3. M. Stucki, M. Loepfe, W.-J. Stark, Porous polymer membranes by hard templating: a review. Adv. Eng. Mater. 20(1), 1700611 (2018)

    Article  Google Scholar 

  4. C. Gaillard, J.-F. Despois, A. Mortensen, Processing of NaCl powders of controlled size and shape for the microstructural tailoring of aluminum foams. Mater. Sci. Eng. A 374(1–2), 250–262 (2004)

    Article  Google Scholar 

  5. Y. Conde, J.-F. Despois, R. Goodall, A. Marmottant, L. Salvo, C. SanMarchi, A. Mortensen, Replication processing of highly porous materials. Adv. Eng. Mater. 8(9), 795–803 (2006)

    Article  CAS  Google Scholar 

  6. R. Goodall, A. Mortensen, Porous metals. Phys. Metall. 32, 2399–2595 (2014)

    Article  Google Scholar 

  7. E.-M. ElizondoLuna, F. Barari, R. Wooley, R. Goodall, Casting protocols for the production of open cell amuminum foams by replication technique and the effect of porosity. J. Vis. Exp. 94, 52268 (2014)

    Google Scholar 

  8. J.-F. Despois, Y. Conde, C. SanMarchi, A. Mortensen, Tensile behavior of replicated aluminium foams. Adv. Eng. Mater. 6(6), 444–447 (2004)

    Article  CAS  Google Scholar 

  9. R. Goodall, J.-F. Despois, A. Mortensen, Sintering of NaCl powder: mechanisms and first stage kinetics. J. Eur. Ceram. Soc. 26, 3487–3497 (2006)

    Article  CAS  Google Scholar 

  10. D.M. Yunos, O. Bretcanu, A.R. Boccaccini, Polymer-bioceramic composites for tissue engineering scaffolds. J. Mater. Sci. 43, 4433–4442 (2008)

    Article  Google Scholar 

  11. S. Jiang, S. Agarwal, A. Greiner, Low-density open cellular sponges as functional materials. Angew. Chem. Int. Ed. 56, 15520–15538 (2017)

    Article  CAS  Google Scholar 

  12. G. Franchin, P. Colombo, Porous geopolymer components through inverse replica of 3D printed sacrificial templates. J. Ceram. Sci. Tech. 06(02), 105–112 (2015)

    Google Scholar 

  13. K. Shahidi, D. Rodrigue, Production of composite membranes by coupling coating and melt extrusion/salt leaching. Ind. Eng. Chem. Res. 56, 1306–1315 (2017)

    Article  CAS  Google Scholar 

  14. X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang, F. Wang, H. Duan, M. Tang, H. Jiang, Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3, 227–235 (2018)

    Article  CAS  Google Scholar 

  15. Q. Hou, D.-W. Grijpma, J. Feijen, Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process. J. Biomed. Mater. Res. Part B 67B, 732–740 (2003)

    Article  CAS  Google Scholar 

  16. G. Wei, P.-X. Ma, Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J. Biomed. Mater. Res Part A 306–315, 78 (2006)

    Google Scholar 

  17. J.S. Capes, H.Y. Ando, R.E. Cameron, Fabrication of polymeric scaffolds with a controlled distribution of pores. J. Mater. Sci. 16, 1069–1075 (2005)

    CAS  Google Scholar 

  18. S.J. Choi, T.H. Kwon, H. Im, D.I. Moon, D.J. Baek, M.L. Seol, J.-P. Duarte, Y.K. Choi, A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl. Mater. Interfaces 3(12), 4552–4556 (2011)

    Article  CAS  Google Scholar 

  19. C. Yu, C. Lu, L. Cui, Z. Song, X. Zhao, Y. Ma, L. Jiang, Facile preparation of the porous PDMS oil-absorbent for oil/water separation. Adv. Mater. Interfaces 4, 1600862 (2017)

    Article  Google Scholar 

  20. R. Hickmana, E. Walkerb, S. Chowdhury, TiO2-PDMS composite sponge for adsorption and solar mediated photodegradation of dye pollutants. J. Water Process Eng. 24, 74–82 (2018)

    Article  Google Scholar 

  21. I. Miletto, C. Ivaldi, G. Paul, S. Chapman, L. Marchese, R. Raja, E. Gianotti, Hierarchical SAPO-34 architectures with tailored acid sites using sustainable sugar templates. ChemistryOpen 7, 297–301 (2018)

    Article  CAS  Google Scholar 

  22. R.V. Festarini, M.-H. Pham, X. Liu, D.P.J. Barz, A sugar-template manufacturing method for microsystem ion-exchange membranes. J. Micromech. Microeng. 27(7), 075011 (2017). https://doi.org/10.1088/1361-6439/aa736b

    Article  CAS  Google Scholar 

  23. Y. Lee, S. Lee, C.M. Jin, J.A. Kwon, T. Kang, I. Choi, Facile fabrication of large-scale porous and flexible three-dimensional plasmonic networks. ACS Appl. Mater. Interfaces 10(33), 28242–28249 (2018). https://doi.org/10.1021/acsami.8b11055

    Article  CAS  PubMed  Google Scholar 

  24. J.F. Patrick, B.P. Krull, M. Garg, C.L. Mangun, J.S. Moore, N.R. Sottos, S.R. White, Robust sacrificial polymer templates for 3D interconnected, microvasculature in fiber-reinforced composites. Composites 100, 361–370 (2017)

    Article  CAS  Google Scholar 

  25. X.-B. Wang, X.-F. Jiang, Y. Bando, Blowing route towards advanced inorganic foams. Bull. Chem. Soc. Jpn. 92, 245–263 (2019)

    Article  CAS  Google Scholar 

  26. C.R. Kellenberger, N.A. Luechinger, A. Lamprou, M. Rossier, R.N. Grass, W.J. Stark, Soluble nanoparticles as removable pore templates for the preparation of polymer ultrafiltration membranes. J. Membr. Sci. 387–388, 76–82 (2012)

    Article  Google Scholar 

  27. B. Doshi, M. Sillanpää, S. Kalliola, A review of bio-based materials for oil spill treatment. Water Res. 135, 262–277 (2018)

    Article  CAS  Google Scholar 

  28. M. Naffakh, M. Dumon, J.-F. Gerard, Modeling the chemorheological behavior of epoxy/liquid aromatic diamine for resin transfer molding applications. J. Appl. Polym. Sci. 102, 4228–4237 (2006)

    Article  CAS  Google Scholar 

  29. M. Naffakh, M. Dumon, J.F. Gerard, Study of a reactive epoxy–amine resin enabling in situ dissolution of thermoplastic films during resin transfer moulding for toughening composites. Compos. Sci. Technol. 66, 1376–1384 (2006)

    Article  CAS  Google Scholar 

  30. P. Gerard, N. PassadeBoupat, T. Fine, L. Gervat, J.-P. Pascault, Toughness properties of lightly crosslinked epoxies using block copolymers. Macromol. Symp. 256, 55–64 (2007)

    Article  CAS  Google Scholar 

  31. W. BinHon, L. Li, M. Cao, X.-M. Chen, Plastic deformation and effects of water in room-temperature cold sintering of NaCl microwave dielectric ceramics. J. Am. Ceram. Soc. 101, 4038–4043 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Dumon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, S., Coupy, A., Tallon, JM. et al. Facile fabrication of porous open-cell polymer structures from sacrificial “natural templates” and composite resins. J Porous Mater 27, 1013–1025 (2020). https://doi.org/10.1007/s10934-020-00878-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00878-0

Keywords

Navigation