Skip to main content
Log in

Anisotropic expansion of PEDOT/PSS-PAM films in water

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We have found for the first time that the PEDOT/PSS-PAM film expands in water when the film is consisted of water-soluble polyacrylamide (PAM). Furthermore, the expansion of the film is evidently anisotropic, i.e., the film area increases while the film thickness decreases. The expansion also has an induction period in the initial stage where the film thickness rapidly increases to attain maximum thickness, while the film area is kept in unchanged. The anisotropic expansion can be well-explained by our hydrophilic-lipophilic-competing (HLC) model proposed in terms of chemical potentials of PAM between the solid state and the solution, coupled with the character of water insoluble PEDOT segment. It is considerable that the larger the △μPAM was, the more the film expanded. The higher content of PAM in the film results in the larger μfPAM, then the larger △μPAM. The dilution of PAM in water also results in the lower μwPAM, then the larger △μPAM. Noting that the sign change of the fsur and fth where fsur and fth are forces biased on surface direction and thickness direction of the film, respectively, occurs at different immersing time, which is a main driving force of the anisotropic expansion of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Jonas, F.; Heywang, G.; Schmidtberg, W.; Heinze, J.; Dietrich, M. Polythiophenes, process for their preparation and their use. US4987042A (1991)

  2. Jonas, F.; Heywang, G.; Schmidtberg, W.; Heinze, J.; Dietrich, M. Method of imparting antistatic properties to a substrate by coating the substrate with a novel polythiophene. US5035926 (1991)

  3. Jonas, F., Kraft, W. Bayer Aktiengesellschaft, Leverkusen D. E. Polythiophene dispersions, their production and their use. US5300575 (1994)

  4. De Longchamp DM, Vogt BD, Brooks CM (2005) Influence of a water rinse on the structure and properties of poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) films. Langmuir 21:11480–11483

    Article  Google Scholar 

  5. Crispin X, Jakobsson FLE, Crispin A (2006) The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)−poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes. Chem Mater 18:4354–4360

    Article  CAS  Google Scholar 

  6. Dimitriev OP, Piryatinski YP, Pud AA (2011) Evidence of the controlled interaction between PEDOT and PSS in the PEDOT:PSS complex via concentration changes of the complex solution. J Phys Chem B 115:1357–1362

    Article  CAS  Google Scholar 

  7. Meskers SCJ, Duren JKJ, Janssen RA (2003) Thermally induced transient absorption of light by poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) films: a way to probe charge-carrier thermalization processes. Adv Funct Mater 13:805–810

    Article  CAS  Google Scholar 

  8. Kemerink M, Timpanaro S, Kok MM, Meulenkamp EA, Touwslager FJ (2004) Three-dimensional inhomogeneities in PEDOT:PSS films. J Phys Chem B 108:18820–18825

    Article  CAS  Google Scholar 

  9. Yan H, Arima S, Mori Y, Kagata T, Sato H, Okuzaki H (2009) Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate): correlation between colloidal particles and thin films. Thin Solid Films 517:3299–3303

    Article  CAS  Google Scholar 

  10. Yan H, Okuzaki H (2009) Effect of solvent on PEDOT/PSS nanometer-scaled thin films: XPS and STEM/AFM studies. Synth Met 159:2225–2228

    Article  CAS  Google Scholar 

  11. Yan H, Jo T, Okuzaki H (2009) Highly conductive and transparent poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) thin films. Polym J 41:1028–1029

    Article  CAS  Google Scholar 

  12. Yan H, Jo T, Okuzaki H (2011) Potential application of highly conductive and transparent poly(3,4-ethylenedioxythiophene)/ poly(4-styrenesulfonate) thin films to touch screen as a replacement for indium tin oxide electrode. Polym J 43:662–665

    Article  CAS  Google Scholar 

  13. Yun DJ, Hong KP, Kim SH, Yun WM, Jang JY, Kwon WS, Park CE, Rhee SW (2011) Multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices. ACS Appl Mater Interfaces 3:43–49

    Article  CAS  Google Scholar 

  14. Toshima N, Jiravanichanun N (2013) Improvement of thermoelectric properties of PEDOT/PSS films by addition of gold nanoparticles: enhancement of seebeck coefficient. J Electron Mater 42:1882–1887

    Article  CAS  Google Scholar 

  15. See KC, Feser JP, Chen CE, Majumdar A, Urban JJ, Segalman RA (2010) Water-processable polymer−nanocrystal hybrids for thermoelectrics. Nano Lett 10:4664–4667

    Article  CAS  Google Scholar 

  16. Yoshida A, Toshima NJ (2014) Gold nanoparticle and gold nanorod embedded PEDOT: PSS thin films as organic thermoelectric materials. Electron Mater 43:1492–1497

    Article  CAS  Google Scholar 

  17. Zhao D, Zhang Q, Chen W, Yi X, Liu S, Wang Q, Liu Y, Li J, Li X, Yu H (2017) Highly flexible and conductive cellulose-mediated PEDOT:PSS/MWCNT composite films for supercapacitor electrodes. ACS Appl Mater Interfaces 9:13213–13222

    Article  CAS  Google Scholar 

  18. Park C, Yoo D, Lee J, Choi H, Kim J (2016) Enhanced power factor of poly (3,4-ethyldioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)/RTCVD graphene hybrid films. Org Electron 36:166–170

    Article  CAS  Google Scholar 

  19. Soltani-kordshuli F, Zabihi F, Eslamian M (2016) Engineering Science and Technology, an International. Eng Sci Tech Int J 19:1216–1223

    Google Scholar 

  20. Wu X, Lian L, Yang S, He G (2016) Highly conductive PEDOT:PSS and graphene oxide hybrid film from a dipping treatment with hydroiodic acid for organic light emitting diodes. J Mater Chem C 4:8528–8534

    Article  CAS  Google Scholar 

  21. Yan H, Zhang P, Li J, Zhao X, Zhang K, Zhang B (2015) PEDOT/PSS-halloysite nanotubes (HNTs) hybrid films: insulating HNTs enhance conductivity of the PEDOT/PSS films. Sci Rep 5:18641

    Article  Google Scholar 

  22. Luo S, Zhang P, Mei Y, Chang J, Yan H (2016) Electromagnetic interference shielding properties of PEDOT/PSS–halloysite nanotube (HNTs) hybrid films. J Appl Polym Sci 133:44242

    Google Scholar 

  23. Luo S, Zhang P, Mei Y, Chang J, Ichikawa S, Oshima K, Toshima N, Yan H (2017) Thermoelectric properties of PEDOT/PSS-halloysite nanotubes (HNTs) hybrid films. Current Nanosci 13:130–135

    Article  CAS  Google Scholar 

  24. Liu N, Fang G, Wan J, Zhou H, Long H, Zhao X (2011) Electrospun PEDOT:PSS–PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. J Mater Chem 21:18962–18966

    Article  CAS  Google Scholar 

  25. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60

    Article  Google Scholar 

  26. Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888

    Article  CAS  Google Scholar 

  27. Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719

    Article  CAS  Google Scholar 

  28. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880

    Article  CAS  Google Scholar 

  29. Yan H, Fujiwara H, Sasaki K, Tsujii K (2005) Rapid swelling/collapsing behavior of thermoresponsive poly(N-isopropylacrylamide) gel containing poly(2-(methacryloyloxy)decyl phosphate) surfactant. Angew Chem Int Ed 44:1951–1954

    Article  CAS  Google Scholar 

  30. Yan H, Nishino M, Tsuboi Y, Kitamura N, Tsujii K (2005) Template-guided synthesis and individual characterization of poly(N-isopropylacrylamide)-based microgels. Langmuir 21:7076–7079

    Article  CAS  Google Scholar 

  31. Yan H, Tsujii K (2005) Novel bimorph-structured hydrogel containing segregated polymer surfactant. Polym J 37:857–861

    Article  Google Scholar 

  32. Liu X, Zheng H, Zhong L, Huang S, Karki K, Zhang L, Liu Y, Kushima A, Liang W, Wang J, Cho J, Epstein E, Dayeh SA, Picraux ST, Zhu T, Li J, Sullivan JP, Cumings J, Wang C, Mao SX, Ye Z, Zhang S, Huang J (2011) Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett 11:3312–3318

    Article  CAS  Google Scholar 

  33. Tsukuda S, Omichi M, Sugimoto M, Idesaki A, Padalkar VS, Seki S (2016) Anisotropic swelling of hydrogel nanowires based on poly(vinylpyrrolidone) fabricated by single-particle nanofabrication technique. J Polym Sci B Polym Phys 54:1950–1956

    Article  CAS  Google Scholar 

  34. Park H, Seong M, Sun K, Ko H, Kim S, Jeong H (2017) Flexible and shape-reconfigurable hydrogel interlocking adhesives for high adhesion in wet environments based on anisotropic swelling of hydrogel microstructures. ACS Macro Lett 6:1325–1330

    Article  CAS  Google Scholar 

  35. Amornwachirabodee K, Okajima MK, Kaneko T (2015) Uniaxial swelling in LC hydrogels formed by two-step cross-linking. Macromolecules 48:8615–8621

    Article  CAS  Google Scholar 

  36. Okeyoshi K, Joshi G, Rawat S, Sornkamnerd S, Amornwachirabodee K, Okajima MK, Ito M, Kobayashi S, Higashimine K, Oshima Y, Kaneko T (2017) Drying-induced self-similar assembly of megamolecular polysaccharides through nano and submicron layering. Langmuir 33:4954–4959

    Article  CAS  Google Scholar 

  37. Okajima MK, Mishima R, Amornwachirabodee K, Mitsumata T, Okeyoshi K, Kaneko T (2015) Anisotropic swelling in hydrogels formed by cooperatively aligned megamolecules. RSC Adv 5:86723–86729

    Article  CAS  Google Scholar 

  38. Adamson AW (1979) Textbook of physical chemistry. Academic Press

  39. Atkins P, de Paula J (2006) Atkins’ physical chemistry. Oxford University Press

  40. Wang Y, Zhu C, Pfattner R, Yan H, Jin L, Chen S, Molina-Lopez F, Lissel F, Liu J, Rabiah NI, Chen Z, Chung JW, Linder C, Toney MF, Murmann B, Bao Z (2017) A highly stretchable, transparent, and conductive polymer. Sci Adv 3:e1602076

    Article  Google Scholar 

  41. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481–494

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the “Key Project Seeds” fund in College of Chemistry and Molecular Engineering, Zhengzhou University, and by the “2014 Creative Talents in Science and Technology” fund in Henan province, China.

Author information

Authors and Affiliations

Authors

Contributions

X.G., Y.A., and W.M. did the experiments. H.Y. wrote the manuscript and designed the project. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hu Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Guo, XQ., An, YJ. et al. Anisotropic expansion of PEDOT/PSS-PAM films in water. Colloid Polym Sci 298, 653–660 (2020). https://doi.org/10.1007/s00396-020-04641-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04641-4

Keywords

Navigation