Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thermally conductive molecular assembly composed of an oligo(ethylene glycol)-modified filamentous virus with improved solubility and resistance to organic solvents

Abstract

Organic polymers are generally regarded as thermal insulators because of their random arrangement of polymeric chains that lead to scattering of heat-conducting phonons. We previously found that highly oriented assemblies composed of M13 phage, a filamentous virus, showed high thermal diffusivity, even though phonons are conducted on noncovalent bonds. However, biomolecular M13 phages did not allow utilization of organic solvents, resulting in limited applicability. Here, we utilized chemically modified M13 phage with oligo(ethylene glycol) (OEG) to improve its solubility and resistance to organic solvents, and to expand the applicability of phage-based thermally conductive assemblies. The high thermal diffusivity of assemblies composed of M13 phages modified with longer EG chains (EG unit: 10) was maintained when the assemblies were prepared using a mixed solvent of water and tetrahydrofuran, whereas that of assemblies composed of unmodified and shorter EG chain (3 and 6)-modified M13 phages was not maintained. When the mixed solvent was used, structural characterization revealed the presence of ordered and hexagonally packed structures that formed ordered assemblies, leading to phonon-conductive assemblies in the case of the longer EG chain-modified M13 phages. Our results will contribute to the construction of novel thermally conductive soft materials composed of biomacromolecular assemblies using organic solvents on substrates with complex surface morphologies and/or hydrophobic surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dogic Z, Fraden S. Ordered phases of filamentous viruses. Curr Opin Colloid Interface Sci. 2006;11:47–55.

    Article  CAS  Google Scholar 

  2. Dogic Z, Sharma P, Zakhary MJ. Hypercomplex liquid crystals. Annu Rev Condens Matter Phys. 2014;5:137–57.

    Article  CAS  Google Scholar 

  3. Zhang Z, Grelet E. Tuning chirality in the self-assembly of rod-like viruses by chemical surface modifications. Soft Matter. 2012;9:1015–24.

    Article  Google Scholar 

  4. Zan T, Wu F, Pei X, Jia S, Zhang R, Wu S, et al. Into the polymer brush regime through the “grafting-to” method: Densely polymer-grafted rodlike viruses with an unusual nematic liquid crystal behavior. Soft Matter. 2015;12:798–805.

    Article  PubMed  CAS  Google Scholar 

  5. Smith GP, Petrenko VA. Phage display. Chem Rev. 1997;97:391–410.

    Article  CAS  PubMed  Google Scholar 

  6. Kehoe J, Kay B. Filamentous phage display in the new millennium. Chem Rev. 2005;105:4056–72.

    Article  CAS  PubMed  Google Scholar 

  7. Sarikaya M, Tamerler C, Jen A, Schulten K, Baneyx F. Molecular biomimetics: nanotechnology through biology. Nat Mater. 2003;2:577–85.

    Article  CAS  PubMed  Google Scholar 

  8. Shiba K. Exploitation of peptide motif sequences and their use in nanobiotechnology. Curr Opin Biotechnol. 2010;21:412–25.

    Article  CAS  PubMed  Google Scholar 

  9. Sawada T, Mihara H, Serizawa T. Peptides as new smart bionanomaterials: molecular recognition and self-assembly capabilities. Chem Rec. 2013;13:172–86.

    Article  CAS  PubMed  Google Scholar 

  10. Günay K, Klok H-A. Identification of soft matter binding peptide ligands using phage display. Bioconjugate Chem. 2015;26:2002–15.

    Article  CAS  Google Scholar 

  11. Lee S-W, Wood BM, Belcher AM. Chiral smectic C structures of virus-based films. Langmuir. 2003;19:1592–8.

    Article  CAS  Google Scholar 

  12. Merzlyak A, Indrakanti S, Lee S-W. Genetically engineered nanofiber-like viruses for tissue regenerating materials. Nano Lett. 2009;9:846–52.

    Article  CAS  PubMed  Google Scholar 

  13. Chung W-J, Merzlyak A, Yoo S, Lee S-W. Genetically engineered liquid-crystalline viral films for directing neural cell growth. Langmuir. 2010;26:9885–90.

    Article  CAS  PubMed  Google Scholar 

  14. Wu L, Lee AL, Niu Z, Ghoshroy S, Wang Q. Visualizing cell extracellular matrix (ECM) deposited by cells cultured on aligned bacteriophage M13 thin films. Langmuir. 2011;27:9490–6.

    Article  CAS  PubMed  Google Scholar 

  15. Yang S, Chung W-J, McFarland S, Lee S-W. Assembly of bacteriophage into functional materials. Chem Rec. 2013;13:43–59.

    Article  PubMed  CAS  Google Scholar 

  16. Moghimian P, Srot V, Rothenstein D, Facey SJ, Harnau L, Hauer B, et al. Adsorption and self-assembly of m13 phage into directionally organized structures on c and SiO2 films. Langmuir. 2014;30:11428–32.

    Article  CAS  PubMed  Google Scholar 

  17. Oh J-W, Chung W-J, Heo K, Jin H-E, Lee BY, Wang E, et al. Biomimetic virus-based colourimetric sensors. Nat Commun. 2014;5:3043.

    Article  PubMed  CAS  Google Scholar 

  18. Courchesne N-MM, Klug MT, Chen P-YY, Kooi SE, Yun DS, Hong N, et al. Assembly of a bacteriophage-based template for the organization of materials into nanoporous networks. Adv Mater. 2014;26:3398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bardhan NM, Ghosh D, Belcher AM. Carbon nanotubes as in vivo bacterial probes. Nat Commun. 2014;5:4918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee J, Jin H-E, Desai MS, Ren S, Kim S, Lee S-W. Biomimetic sensor design. Nanoscale. 2015;7:18379–91.

    Article  CAS  PubMed  Google Scholar 

  21. Sawada T. Filamentous virus-based soft materials based on controlled assembly through liquid crystalline formation. Polym J. 2017;49:639–47.

    Article  CAS  Google Scholar 

  22. Sawada T, Serizawa T. Filamentous viruses as building blocks for hierarchical self-assembly toward functional soft materials. Bull Chem Soc Jpn. 2018;91:455–66.

    Article  CAS  Google Scholar 

  23. Zhi X, Zheng C, Xiong J, Li J, Zhao C, Shi L, et al. Nanofilamentous virus-based dynamic hydrogels with tunable internal structures, injectability, self-healing, and sugar responsiveness at physiological ph. Langmuir. 2018;34:12914–23.

    Article  CAS  PubMed  Google Scholar 

  24. Mohan K, Weiss GA. Chemically modifying viruses for diverse applications. ACS Chem Biol. 2016;11:1167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu S, Zan T, Chen S, Pei X, Li H, Zhang Z. Thermoresponsive chiral to nonchiral ordering transformation in the nematic liquid-crystal phase of rodlike viruses: turning the survival strategy of a virus into valuable material properties. Langmuir. 2015;31:6995–7005.

    Article  CAS  PubMed  Google Scholar 

  26. Cao J, Liu S, Xiong J, Chen Y, Zhang Z. Stimuli responsive chiral liquid crystal phases of phenylboronic acid functionalized rodlike viruses and their interaction with biologically important diols. Chem Commun. 2014;50:10402–5.

    Article  CAS  Google Scholar 

  27. Zhang Z, Krishna N, Lettinga PM, Vermant J, Grelet E. Reversible gelation of rod-like viruses grafted with thermoresponsive polymers. Langmuir. 2009;25:2437–42.

    Article  CAS  PubMed  Google Scholar 

  28. Peplow M. The plastics revolution: How chemists are pushing polymers to new limits. Nature. 2016;536:266–8.

    Article  CAS  PubMed  Google Scholar 

  29. Shen S, Henry A, Tong J, Zheng R, Chen G. Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol. 2010;5:251–5.

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Ho V, Segalman RA, Cahill DG. Thermal conductivity of high-modulus polymer fibers. Macromolecules. 2013;46:4937–43.

    Article  CAS  Google Scholar 

  31. Wang Z, Carter JA, Lagutchev A, Koh YK, Seong N-HH, Cahill DG, et al. Ultrafast flash thermal conductance of molecular chains. Science. 2007;317:787–90.

    Article  CAS  PubMed  Google Scholar 

  32. Chae HG, Kumar S. Materials science. Making strong fibers. Science. 2008;319:908–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kim G-H, Lee D, Shanker A, Shao L, Kwon M, Gidley D, et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat Mater. 2015;14:295–300.

    Article  CAS  PubMed  Google Scholar 

  34. Singh V, Bougher TL, Weathers A, Cai Y, Bi K, Pettes MT, et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat Nanotechnol. 2014;9:384–90.

    Article  CAS  PubMed  Google Scholar 

  35. Shoji Y, Ishige R, Higashihara T, Morikawa J, Hashimoto T, Takahara A, et al. Cross-linked liquid crystalline polyimides with siloxane units: their morphology and thermal diffusivity. Macromolecules. 2013;46:747–55.

    Article  CAS  Google Scholar 

  36. Wang RY, Segalman RA, Majumdar A. Room temperature thermal conductance of alkanedithiol self-assembled monolayers. Appl Phys Lett. 2006;89:173113.

    Article  CAS  Google Scholar 

  37. Huang X, Liu G, Wang X. New secrets of spider silk: exceptionally high thermal conductivity and its abnormal change under stretching. Adv Mater. 2012;24:1482–6.

    Article  CAS  PubMed  Google Scholar 

  38. Sawada T, Murata Y, Marubayashi H, Nojima S, Morikawa J, Serizawa T. Filamentous virus-based assembly: Their oriented structures and thermal diffusivity. Sci Rep. 2018;8:5412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sawada T, Murata Y, Marubayashi H, Nojima S, Morikawa J, Serizawa T. High thermal diffusivity in thermally treated filamentous virus-based assemblies with a smectic liquid crystalline orientation. Viruses. 2018;10:608.

    Article  CAS  PubMed Central  Google Scholar 

  40. Sawada T, Okeya Y, Hashizume M, Serizawa T. Screening of peptides recognizing simple polycyclic aromatic hydrocarbons. Chem Commun. 2013;49:5088–90.

    Article  CAS  Google Scholar 

  41. Sawada T, Asada M, Serizawa T. Selective rare earth recovery employing filamentous viruses with chemically conjugated peptides. ChemistrySelect. 2016;1:2712–6.

    Article  CAS  Google Scholar 

  42. Suzuki S, Sawada T, Ishizone T, Serizawa T. Affinity-based thermoresponsive precipitation of proteins modified with polymer-binding peptides. Chem Commun. 2016;52:5670–3.

    Article  CAS  Google Scholar 

  43. Morikawa J, Hashimoto T. Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis. J Appl Phys. 2009;105:113506.

    Article  CAS  Google Scholar 

  44. Marubayashi H, Asai S, Sumita M. Complex crystal formation of poly(l-lactide) with solvent molecules. Macromolecules. 2012;45:1384–97.

    Article  CAS  Google Scholar 

  45. Nam Y, Shin T, Park H, Magyar AP, Choi K, Fantner G, et al. Virus-templated assembly of porphyrins into light-harvesting nanoantennae. J Am Chem Soc. 2010;132:1462–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Science and Technology Agency (JST) through the Precursory Research for Embryonic Science and Technology (PRESTO) Grant Number JPMJPR17I4 to TS. TS is grateful to the Challenging Research Award from the Tokyo Institute of Technology. The SAXS measurements were performed under the approval of the Photon Factory Advisory Committee (Nos. 2017G084, 2018G655, and 2019G112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshiki Sawada or Takeshi Serizawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawada, T., Tsuruoka, T., Ueda, N. et al. Thermally conductive molecular assembly composed of an oligo(ethylene glycol)-modified filamentous virus with improved solubility and resistance to organic solvents. Polym J 52, 803–811 (2020). https://doi.org/10.1038/s41428-020-0328-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0328-7

This article is cited by

Search

Quick links