Skip to main content

Advertisement

Log in

Layout optimization of viscoelastic damping for noise control of mid-frequency vibro-acoustic systems

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents an integrated, new, and generic framework for layout optimization of viscoelastic damping for noise control of mid-frequency vibro-acoustic systems. The method is developed based on the concept of power balance among different modal energies between coupled structural and acoustic subsystems and is formulated within the framework of a statistical modal energy distribution analysis (SmEdA). In the novel optimization formulation, the total energy of the acoustic subsystem is chosen as the objective function for minimizing the internal acoustic response in the vibro-acoustic system; and the relative material volume densities for viscoelastic element groups are selected as design variables using a volume-preserving Heaviside function. A new sensitivity analysis formulation is developed in a semi-analytical form via a SmEdA for solving the vibro-acoustic optimization problem. Two numerical examples are presented to demonstrate the efficiency and effectiveness of the present method. The present numerical results reveal two important findings: (a) the total acoustic energy of the chosen vibro-acoustic system can be significantly reduced; and (b) the optimum viscoelastic material layouts not only decrease the peak values of the modal coupling strengths between structural and acoustic subsystems but also create relatively more uniform acoustic modal energy distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

ap(t):

Modal amplitude corresponding to the pth displacement mode

bq(t):

Modal amplitude corresponding to the qth acoustic mode

c air :

Sound speed of the air in acoustic cavity

cq(t):

Integrated modal amplitude corresponding to the qth acoustic mode

C 11 :

Modal coupling factor matrix of structural subsystem

C 12 :

Modal coupling factor matrix between structural subsystem and acoustic subsystem

C 21 :

Modal coupling factor matrix between acoustic subsystem and structural subsystem

C 22 :

Modal coupling factor matrix of acoustic subsystem

E(dB):

Energy units measured by decibels

E(J):

Energy units measured by joules

E i :

Surrogate Young’s modulus of the design material in the ith design domain

E min :

A very small modulus assigned to void regions and is set to be 0.001E0 in this study

Ep (Eq):

The p (q)th modal energy of structural (acoustic) subsystem

E ref :

Reference value when transforming from joules to decibels

E steel :

Young’s modulus of steel plate

Estr (Eaco):

Total energy of structural (acoustic) subsystem

\( {E}_{visc}^{\ast } \) :

Complex Young’s modulus of the viscoelastic damping material

E 0 :

Real Young’s modulus of the design material

E 1 :

Modal energy vector of structural subsystem

E 2 :

Modal energy vector of acoustic subsystem

f :

Prescribed volume fraction

Fp(t) (Fq(t)):

The p (q)th generalized modal force acting on structural (acoustic) subsystem

k :

Penalty factor used in modified SIMP model and is designated as 3 in this paper

Kba (Mba):

Stiffness (mass) matrix of the base structure

\( {K}_{visc}^{\ast }\ \left({M}_{visc}^{\ast}\right) \) :

Complex stiffness (mass) matrix of the viscoelastic damping material

Lpq(t) (Lqp(t)):

Interaction forces between structural and acoustic subsystems

M :

An arbitrary point in structural domain

M :

An arbitrary point in acoustic domain

M e :

Excitation point on the surface of structural subsystem

Mp (Mq):

The p (q)th modal mass of structural (acoustic) subsystem

N :

Number of design domains

N1(N2):

Number of resonant modes of structural (acoustic) subsystem

p :

Modal order of structural subsystem

P(M, t):

Sound pressure of acoustic domain at M

\( {\tilde{P}}_q\left({M}^{\prime}\right) \) :

The qth acoustic mode of acoustic subsystem

q :

Modal order of acoustic subsystem

S coupling :

Fluid-structure coupling surface

S FF :

Power spectral density of the generalized external force F

\( {S}_{F_p} \) :

Power spectral density of the generalized modal force Fp(t)

U(M, t):

Displacement of structural domain at M

\( {\tilde{U}}_p(M) \) :

The pth displacement mode of structural subsystem

\( {\tilde{U}}_p\left({M}_e\right) \) :

Modal displacement at excitation point Me with respect to the pth displacement mode of structural subsystem

V i :

Volume of the the ith design domain

W :

Total weight of the design material

W pq :

Modal coupling work between the pth structural mode and the qth acoustic mode

W 0 :

Allowable maximum material weight

\( {\tilde{x}}_i \) :

Surrogate material density, i.e., relative material volume density of the ith design domain

x i :

The ith design variable

x :

Vector of design variables

x min :

Vector denoting the low bounds of the design variables

α, θ :

Two control parameters in the volume-preserving Heaviside function

β pq :

Modal coupling factor between the pth structural mode and qth acoustic mode

\( {\lambda}_p^{\ast } \) :

The pth complex eigenvalue evaluated from the structural subsystem treated with viscoelastic damping material

η air :

Modal damping loss factors of the air in the acoustic cavity

η mat :

Damping loss factor of the viscoelastic damping material

ηp(ηq):

The p (q)th modal damping loss factor of structural (acoustic) subsystem

ν steel :

Poisson’s ratio of the steel plate

ν visc :

Poisson’s ratio of the viscoelastic material

\( {\varPi}_p^{diss} \) :

Time-averaged power dissipated by internal damping

\( {\varPi}_p^{inj} \) :

Time-averaged power injected into the pth mode (modal input power)

Π pq :

Time-averaged power flow transmitted from the pth structural mode to the qth acoustic mode

Π 1 :

Vector of modal input powers of structural subsystem

Π 2 :

Vector of modal input powers of acoustic subsystem

ρ air :

Mass density of the air in the acoustic cavity

ρ i :

Surrogate material mass density of the design material at the ith design domain

ρ steel :

Mass density of the steel plate

ρ visc :

Mass density of the viscoelastic material

ρ 0 :

Real mass density of the design material

ωp(ωq):

The p (q)th angular frequency of structural (acoustic) subsystem

References

  • Andreasen CS, Andreasen E, Jensen JS, Sigmund O (2014) On the realization of the bulk modulus bounds for two-phase viscoelastic composites. J Mech Phys Solids 63:228–241

    Article  MathSciNet  Google Scholar 

  • Andreasssen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of codes. Struct Multidiscip Optim 43:1–16

    Article  Google Scholar 

  • Aragonès À, Maxit L, Guasch O (2015) A graph theory approach to identify resonant and non-resonant paths in statistical model energy distribution analysis. J Sound Vib 350:91–110

    Article  Google Scholar 

  • Bendsoe MP, Sigmund O (2003) Topology optimization, theory, methods, and applications. Spring-Verlag, Berlin Heidelberg

    MATH  Google Scholar 

  • Bot AL (2015) Foundation of Statistical Energy in Vibroacoustics. Oxford University Press, Oxford

    Book  Google Scholar 

  • Chen N, Yu DJ, Xia BZ, Liu J, Ma ZD (2017) Microstructural topology optimization of structural-acoustic coupled systems for minimizing sound pressure level. Struct Multidiscip Optim 56:1259–1270

    Article  MathSciNet  Google Scholar 

  • Cremer L, Heckl M (2013) Structure-borne: structural vibrations and sound radiation at audio frequencies. Springer Science & Business Media

  • Delgado G, Hamdaoui M (2019) Topology optimization of frequency dependent viscoelastic structures via a level-set method. Appl Math Comput 347:522–541

    MathSciNet  MATH  Google Scholar 

  • Du JB, Olhoff N (2007) Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct Multidiscip Optim 33:305–321

    Article  Google Scholar 

  • Du JB, Olhoff N (2010) Topological design of vibrating structures with respect to optimum sound pressure characteristics in a surrounding acoustic medium. Struct Multidiscip Optim 42:43–54

    Article  MathSciNet  Google Scholar 

  • Du JB, Sun CC (2017) Reliability-based vibro-acoustic microstructural topology optimization. Struct Multidiscip Optim 55:1195–1215

    Article  MathSciNet  Google Scholar 

  • Du JB, Yang RZ (2015) Vibro-acoustic design of plate using bi-material microstructural topology optimization. J Mech Sci Technol 29(4):1413–1419

    Article  Google Scholar 

  • EI-Sabbagh A, Baz A (2014) Topology optimization of unconstrained damping treatments for plates. Eng Optim 46(9):1153–1168

    Article  MathSciNet  Google Scholar 

  • Guyader JL, Totaro N, Maxit L (2016) Statistical energy analysis with fuzzy parameters to handle populations of structures. J Sound Vib 379:119–134

    Article  Google Scholar 

  • Hwang HD (2015) Extension of the SmEdA method by taking into account dissipative materials. Dissertation, Institut National des Sciences Appliquées de Lyon, France

  • Hwang HD, Maxit L, Ege K, Gerges Y, Guyader JL (2017) SmEdA vibro-acoustic modelling in the mid-frequency range including the effect of dissipative treatments. J Sound Vib 393:187–215

    Article  Google Scholar 

  • Johnson CD, Kienholz DA (1982) Finite element prediction of damping in structures with viscoelastic layers. AIAA J 20(9):1284–1290

    Article  Google Scholar 

  • Kim SY (2011) Topology design optimization for vibration reduction: reducible design variable method. Dissertation, Queen’s University, Ontario, Canada

  • Kim SY, Mechefske CK, Kim IY (2013) Optimal damping layout in a shell structure using topology optimization. J Sound Vib 332:2873–2883

    Article  Google Scholar 

  • Kook J, Jensen JS (2017) Topology optimization of periodic microstructures for enhanced loss factor using acoustic-structure interaction. Int J Solids Struct 122-123:59–68

    Article  Google Scholar 

  • Liu QM, Ruan D, Huang XD (2018) Topology optimization of viscoelastic materials on damping and frequency of macrostructures. Comput Methods Appl Mech Eng 337:305–323

    Article  MathSciNet  Google Scholar 

  • Luo JH, Gea HC (2003) Optimal stiffener design for interior sound reduction using a topology optimization based approach. J Vib Acoust-Tran ASME 125:267–273

    Article  Google Scholar 

  • Lyon RH, Dejong RG (1995) Theory and application of statistical energy analysis, 2nd edn. Butterworth-Heinemann, Boston

    Google Scholar 

  • Ma ZD, Hagiwara I (1991) Sensitivity analysis of coupled acoustic-structural systems part I: modal sensitivities. AIAA J 29(11):1787–1795

    Article  Google Scholar 

  • Maxit L (2000) Reformulation and extension of SEA model by relaxing the modal energy Equipartition. Disertation, Institut National des Sciences Appliquées de Lyon, France

  • Maxit L, Guyader JL (2001a) Estimation of SEA coupling loss factors using a dual formulation and FEM modal information, part I: theory. J Sound Vib 239(5):907–930

    Article  Google Scholar 

  • Maxit L, Guyader JL (2001b) Estimation of SEA coupling loss factors using a dual formulation and FEM modal information, part II: numerical applications. J Sound Vib 239(5):931–948

    Article  Google Scholar 

  • Maxit L, Guyader JL (2003) Extension of the SEA model to subsystems with non-uniform modal energy distribution. J Sound Vib 265(2):337–358

    Article  Google Scholar 

  • Maxit L, Ege K, Totaro N, Guyader JL (2014) Non resonant transmission modelling with statistical modal energy distribution analysis. J Sound Vib 333:499–519

    Article  Google Scholar 

  • Park SW (2001) Analytical modeling of viscoelastic dampers for structural and vibration control. Int J Solids Struct 38:8065–8092

    Article  Google Scholar 

  • Shang LY, Zhao GZ (2016) Optimality criteria-based topology optimization of a bi-material model for acoustic-structural coupled systems. Eng Optim 48(6):1060–1079

    Article  MathSciNet  Google Scholar 

  • Shu L, Wang MY, Ma ZD (2014) Level set based topology optimization of vibrating structures for coupled acoustic-structural dynamics. Comput Struct 132:34–42

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4):401–424

    Article  Google Scholar 

  • Stelzer R, Totaro N, Pavic G, Guyader JL, Maxit L (2010) Non resonant contribution and energy distributions using statistical modal energy distribution analysis (SmEdA). Proceedings of ISMA2010-international conference on noise and vibration engineering, Leuven, Belgium, pp 2039-2053

  • Svanberg K (1987) The method of moving asymptotes-a new method of structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  Google Scholar 

  • Totaro N, Dodard C, Guyader JL (2009) SEA coupling loss factors of complex vibro-acoustic systems. J Vib Acoust-Tran ASME 131(2):041099–041091

    Google Scholar 

  • Xu SL, Cai YW, Cheng GD (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41:495–505

    Article  MathSciNet  Google Scholar 

  • Yamamoto T, Yamada T, Izui K, Nishiwaki S (2015) Topology optimization of free-layer damping material on a thin panel for maximizing modal loss factors expressed by only real eigenvalues. J Sound Vib 358:84–96

    Article  Google Scholar 

  • Yang RZ, Du JB (2013) Microstructural topology optimization with respect to sound power radiation. Struct Multidiscip Optim 47:191–206

    Article  Google Scholar 

  • Yu Y, Zhao GZ, Ren SH (2019) Design optimization of mid-frequency vibro-acoustic systems using a statistical modal energy distribution analysis model. Struct Multidiscip Optim 59(5):1455–1470

    Article  Google Scholar 

  • Yun KS, Youn SK (2018) Topology optimization of viscoelastic damping layers for attenuating transient response of shell structures. Finite Elem Anal Des 141:154–165

    Article  Google Scholar 

  • Zhang XP, Kang Z (2013) Topology optimization of damping layers for minimizing sound radiation of shell structures. J Sound Vib 332:2500–2519

    Article  Google Scholar 

Download references

Funding

The research project is supported by the National Natural Science Foundation of China (U1508209, 11072049), Liaoning BaiQianWan Talents Program and Dalian Science and Technology Innovation Fund (2018J11CY003). The authors would like to acknowledge the support of these funds. The authors are also grateful to Krister Svanberg of KTH in Stockholm for providing the MMA optimization subroutines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The corresponding codes can be obtained in the supplementary material. Only the codes for numerical examples in Section 4.1 are given. The source codes includes the mph. files built in COMSOL and the m. files written in MATLAB. The readers should install the COMSOL Multiphysics with MATLAB and replicate the resluts about the case of Plate-cavity system in Section 4.1

Additional information

Responsible Editor: Emilio Carlos Nelli Silva

Electronic supplementary material

ESM 1

(7z 3.99 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Tong, L. & Zhao, G. Layout optimization of viscoelastic damping for noise control of mid-frequency vibro-acoustic systems. Struct Multidisc Optim 62, 667–684 (2020). https://doi.org/10.1007/s00158-020-02524-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02524-4

Keywords

Navigation