Skip to main content
Log in

Fault-Tolerant Synchronization of Chaotic Systems with Fuzzy Sampled Data Controller Based on Adaptive Event-Triggered Scheme

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper deals with the problem of the fault-tolerant fuzzy master–slave systems synchronization through an adaptive event-triggered scheme (AETS). First, a Takagi–Sugeno (T–S) fuzzy model is employed to represent the master–slave system dynamics. Second, an AETS is introduced to judge whether the newly sampled controller’s signals should be released to the slave system or not. Consequently, the less computation resources and network bandwidth are utilized under the AETS. Meanwhile, a novel adaptive law is designed to achieve the threshold of event-triggering condition on-line. Third, a novel fuzzy controller is designed, containing a state feedback controller and a fault compensator to achieve the fault-tolerant synchronization, which is formulated to study the global asymptotical stability of the error system. As a results, applying Lyapunov theory and inequality technique, new sufficient condition is obtained to guarantee the stability of the error system. Further, the controller gain and the weight of event-triggering condition are designed through linear matrix inequalities (LMIs) approach. Finally, a numerical simulation example is employed to demonstrate the practical utility of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vaseghi, B., Pourmina, M.A., Mobayen, S.: Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control. Nonlinear Dyn. 89(3), 1689–1704 (2017)

    Article  MathSciNet  Google Scholar 

  2. Xue, C.P., Jiang, N., Lv, Y.X., et al.: Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems. IEEE Trans. Commun. 65(1), 312–319 (2017)

    Google Scholar 

  3. Jovic, B., Unsworth, C.P., Sandhu, G.S., et al.: A robust sequence synchronization unit for multi-user DS-CDMA chaos-based communication systems. Signal Processing 87(7), 1692–1708 (2007)

    Article  Google Scholar 

  4. Li, P., Li, B.Y., Mou, J., et al.: Chaos synchronization of complex network based on signal superposition of single variable. Int. J. Wirel. Inf. Netw. 25(3), 258–268 (2018)

    Article  Google Scholar 

  5. Ouannas, A., Azar, A.T., Vaidyanathan, S.: A robust method for new fractional hybrid chaos synchronization. Math. Methods Appl. Sci. 40, 1804–1812 (2017)

    Article  MathSciNet  Google Scholar 

  6. Satake, A., Iwasa, Y.: Pollen coupling of forest trees: forming synchronized and periodic reproduction out of chaos. J. Theor. Biol. 203(2), 63–84 (2000)

    Article  Google Scholar 

  7. Luo, R.Z., Su, H.P., Zeng, Y.H.: Synchronization of uncertain fractional-order chaotic systems via a novel adaptive controller. Chin. J. Phys. 55(2), 342–349 (2017)

    Article  Google Scholar 

  8. Bouzeriba, A., Boulkroune, A., Bouden, T.: Projective synchronization of two different fractional-order chaotic systems via adaptive fuzzy control. Neural Comput. Appl. 27(5), 1349–1360 (2016)

    Article  Google Scholar 

  9. Siddique, M., Rehan, M.: A concept of coupled chaotic synchronous observers for nonlinear and adaptive observers-based chaos synchronization. Nonlinear Dyn. 84(4), 2251–2272 (2016)

    Article  MathSciNet  Google Scholar 

  10. Khadra, A., Liu, X.Z., Shen, X.M.: Impulsive control and synchronization of spatiotemporal chaos. Chaos Solitons Fractals 26(2), 615–636 (2005)

    Article  MathSciNet  Google Scholar 

  11. Zhang, X.Y., Lv, X.X., Li, X.D.: Sampled-data-based lag synchronization of chaotic delayed neural networks with impulsive control. Nonlinear Dyn. 90(3), 2199–2207 (2017)

    Article  MathSciNet  Google Scholar 

  12. Shi, X.R., Wang, Z.L.: Robust chaos synchronization of four-dimensional energy resource system via adaptive feedback control. Nonlinear Dyn. 60(4), 631–637 (2010)

    Article  Google Scholar 

  13. Jiang, G.P., Chen, G.R., Tang, K.S.: A new criterion for chaos synchronization using linear state feedback control. Int. J. Bifurc. Chaos 13(8), 2343–2351 (2013)

    Article  Google Scholar 

  14. Wu, X.F., Chen, G.R., Cai, J.P.: Chaos synchronization of the master-slave generalized Lorenz systems via linear state error feedback control. Phys. D Nonlinear Phenom. 229(1), 52–80 (2007)

    Article  MathSciNet  Google Scholar 

  15. Wu, W.S., Zhao, Z.S., Zhang, J., et al.: State feedback synchronization control of coronary artery chaos system with interval time-varying delay. Nonlinear Dyn. 87(3), 1773–1783 (2017)

    Article  Google Scholar 

  16. Xie, X.P., Yue, D., Chen, P.: Relaxed real-time scheduling stabilization of discrete-time Takagi-Sugeno fuzzy systems via a alterable-weights-based ranking switching mechanism. IEEE Trans. Fuzzy Syst. 26(6), 3808–3819 (2018)

    Article  Google Scholar 

  17. Xie, X.P., Yue, D., Park, J.H., et al.: Relaxed fuzzy observer design of discrete-time nonlinear systems via two effective technical measures. IEEE Trans. Fuzzy Syst. 26(5), 2833–2845 (2018)

    Article  Google Scholar 

  18. Lam, H.K., Seneviratne, Lakmal D.: Chaotic synchronization using sampled-data fuzzy controller based on fuzzy-model-based approach. IEEE Trans. Circuits Syst. I Reg. Papers 55(3), 883–892 (2008)

    Article  MathSciNet  Google Scholar 

  19. Hwang, E.J., Hyun, C.H., Kim, E., et al.: Fuzzy model based adaptive synchronization of uncertain chaotic systems: robust tracking control approach. Phys. Lett. A 373(22), 1935–1939 (2009)

    Article  Google Scholar 

  20. Boubellouta, A., Zouari, F., Boulkroune, A.: Intelligent fuzzy controller for chaos synchronization of uncertain fractional-order chaotic systems with input nonlinearities. Int. J. Gen. Syst. 48(3), 1–24 (2019)

    Article  MathSciNet  Google Scholar 

  21. Wang, Y.G., Yu, H.L.: Fuzzy synchronization of chaotic systems via intermittent control. Chaos Solitons Fractals 106, 154–160 (2018)

    Article  MathSciNet  Google Scholar 

  22. Zhong, M.Y., Han, Q.L.: Fault-tolerant master-slave synchronization for Lur’e systems using time-delay feedback control. IEEE Trans. Circuits Syst. I Reg. Papers 56(7), 1391–1404 (2009)

    Article  Google Scholar 

  23. Zhang, H.G., Ma, D.Z., Wang, Z.S.: Fault tolerant control of master-slave synchronization for a class of chaos systems with multiple time-delays. Acta Phys. Sin. 59(1), 147–156 (2010)

    MATH  Google Scholar 

  24. Jin, Y., Fu, J., Zhang, Y.M., et al.: Fault-tolerant control of switched nonlinear systems with strong structural uncertainties: average dwell-time method. Proceedings of the 32nd Chinese Control Conference, (2013)

  25. Fu, J., Chai, T.Y., Jin, Y., et al.: Fault-tolerant control of a class of switched nonlinear systems with structural uncertainties. IEEE Trans. Circuits Syst. II Exp. Briefs 63(2), 201–205 (2016)

    Article  Google Scholar 

  26. Williams, R., Gasparri, A., Priolo, A., et al.: Evaluating network rigidity in realistic systems: decentralization, asynchronicity, and parallelization. IEEE Trans. Robot. 30(4), 950–965 (2014)

    Article  Google Scholar 

  27. Li, T., Wang, T., Zhang, G.B., et al.: Event-triggered output synchronization in master-slave Lure systems with heterogeneous dimensions. Circuits Syst. Signal Process. 36(2), 811–833 (2017)

    Article  Google Scholar 

  28. Liu, D., Yang, G.H.: Event-triggered synchronization control for complex networks with actuator saturation. Neurocomputing 275(1), 2209–2216 (2018)

    Article  Google Scholar 

  29. Liu, S.J., Zhou, L.: Network synchronization and application of chaotic Lure systems based on event-triggered mechanism. Nonlinear Dyn. 83(4), 2497–2507 (2016)

    Article  Google Scholar 

  30. Ma, D.Z., Li, X.Y., Sun, Q.Y., et al.: Fault tolerant synchronization of chaotic systems with time delay based on the double event-triggered sampled control. Appl. Math. Comput. 333, 20–31 (2018)

    Article  MathSciNet  Google Scholar 

  31. Li, Q., Shen, B., Wang, Z.D., et al.: Synchronization control for A class of discrete time-delay complex dynamical networks: a dynamic event-triggered approach. IEEE Trans. Cybern. 49(5), 1979–1986 (2019)

    Article  Google Scholar 

  32. Lu, W.L., Han, Y.J., Chen, T.P.: Synchronization in networks of linearly coupled dynamical systems via event-triggered diffusions. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3060–3069 (2015)

    Article  MathSciNet  Google Scholar 

  33. Girard, Antoine: Dynamic triggering mechanisms for event-triggered control. IEEE Trans. Autom. Control 60(7), 1992–1997 (2015)

    Article  MathSciNet  Google Scholar 

  34. Tanaka, K., Wang, H.: Fuzzy control systems design and analysis: a linear matrix inequlity approach. Wiley, New York (2001)

    Book  Google Scholar 

  35. Tomohiro, T., Michio, S.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans SMC 15(1), 116–132 (1985)

    MATH  Google Scholar 

  36. Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

Download references

Funding

Funding was provided by National Key Research and Development Program of China (2018YFA0702200); Liao Ning Revitalization Talents Program (XLYC1807009); National Natural Science Foundation of China (61773109, 61573094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazhong Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ma, D., Xie, X. et al. Fault-Tolerant Synchronization of Chaotic Systems with Fuzzy Sampled Data Controller Based on Adaptive Event-Triggered Scheme. Int. J. Fuzzy Syst. 22, 917–929 (2020). https://doi.org/10.1007/s40815-019-00786-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00786-9

Keywords

Navigation