Skip to main content
Log in

Classification of Tree Species at the Leaf Level based on Hyperspectral Imaging Technology

  • Published:
Journal of Applied Spectroscopy Aims and scope

This study utilized hyperspectral imaging technology to identify eight tree species at the leaf level. The successive projections algorithm (SPA), information gain (IG), and Gini index (Gini) were used to select the feature bands. Furthermore, the binary particle swarm optimization (BPSO) algorithm was used to optimize the feature bands selected by SPA, IG, and Gini. The particle swarm optimization–extreme learning machine (PSO–ELM), linear Bayes normal classifi er (LBNC), and k-nearest neighbor (KNN) recognition models for tree species were established based on all bands, feature bands, and optimized feature bands, respectively. The experimental results show that the recognition rates of the PSO–ELM, LBNC, and KNN models based on all bands were 98.45, 99.10, and 83.67%, respectively. The SPA, IG, and Gini models can all effectively select spectral bands on tree species discrimination and greatly reduce the dimension of spectral data, in which the recognition effects of the models based on the feature bands selected by Gini were the best, and the recognition rates of the PSO–ELM, LBNC, and KNN models reached 97.55, 96.53, and 80.5%, respectively. Additionally, BPSO–SPA, BPSO–IG, and BPSO–Gini models can all further reduce the dimension of spectral data on the basis of ensuring the recognition accuracy of models, in which the models established based on the optimized feature bands selected by BPSO–Gini achieved the best recognition effect and the recognition rates of the PSO–ELM, LBNC, and KNN models reached 96.53, 96.68, and 81.05%, respectively. In general, the recognition performance of the PSO–ELM model was better than those of the LBNC and KNN models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. S. Liu and X. L. Zhang, Forest Res. Manage., 1, 61–64 (2004).

    Google Scholar 

  2. O. Nevalainen, E. Honkavaara, S. Tuominen, N. Viljanen, T. Hakala, and X. Yu, Remote Sens., 9, 185 (2017).

    Article  ADS  Google Scholar 

  3. L. C. Plourde, S. V. Ollinger, M. L. Smith, and M. E. Martin, Photogram. Eng. Remote Sens., 73, No. 7, 829–840 (2007).

    Article  Google Scholar 

  4. B. X. Ma, Y. B. Ying, X. Q. Rao, and J. S. Gui, Spectrosc. Spectr. Anal., 29, No. 6, 1611–1615 (2009).

    Google Scholar 

  5. J. B. Feret and G. P. Asner, IEEE Trans. Geosci. Remote Sens., 51, No. 1, 73–84 (2012).

    Article  ADS  Google Scholar 

  6. R. George, H. Padalia, and S. P. S. Kushwaha, Int. J. Appl. Earth Observ. Geoinform., 28, No. 1, 140–149 (2014).

    Article  ADS  Google Scholar 

  7. M. Jia, Y. Zhang, Z. Wang, K. Song, and C. Ren, Int. J. Appl. Earth Observ. Geoinform., 33, No. 1, 226–231 (2014).

    Article  ADS  Google Scholar 

  8. H. P. La, D. E. Yang, A. Chang, and C. Kim, KSCE J. Civil Eng., 19, No. 4, 1078–1087 (2015).

    Article  Google Scholar 

  9. Z. Zhang, A. Kazakova, L. Moskal, and D. Styers, Forests, 7, No. 6, 122 (2016).

    Article  Google Scholar 

  10. J. Cao, W. Leng, K. Liu, L. Liu, Z. He, and Y. Zhu, Remote Sens., 10, No. 1, 89 (2018).

    Article  ADS  Google Scholar 

  11. A. Ghosh, F. E. Fassnacht, P. K. Joshi, and B. Koch, Int. J. Appl. Earth Observ. Geoinform., 26, No. 2, 49–63 (2014).

    Article  ADS  Google Scholar 

  12. R. D. Jackson, P. M. Teillet, P. N. Slater, G. Fedosejevs, M. F. Jasinski, and J. K. Aase, Remote Sens. Environ., 32, No. 2, 189–202 (1990).

    Article  ADS  Google Scholar 

  13. X. Li and A. H. Strahler, IEEE Trans. Geosci. Remote Sens., 30, No. 2, 276–292 (1992).

    Article  ADS  Google Scholar 

  14. P. Pellikka, D. J. King, and S. G. Leblanc, Remote Sens. Rev., 19, No. 1–4, 259–291 (2000).

    Article  Google Scholar 

  15. S. Tuominen, R. Nasi, E. Honkavaara, A. Balazs, T. Hakala, N. Viljanen, I. Polonen, H. Saari, and H. Ojanen, Remote Sens., 10, No. 5, 714 (2018).

    Article  ADS  Google Scholar 

  16. M. A. Cochrane, Int. J. Remote Sens., 21, No. 10, 2075–2087 (2000).

    Article  ADS  Google Scholar 

  17. Z. H. Wang and L. X. Ding, Spectrosc. Spectr. Analys., 30, No. 7, 1825–1829 (2010).

    Google Scholar 

  18. H. J. Lin, H. F. Zhang, Y. Q. Gao, X. Li, F. Yang, and Y. F. Zhou, Spectrosc. Spectr. Anal., 34, No. 12, 3358–3362 (2014).

    Google Scholar 

  19. X. R. Geng, K. Sun, L. Y. Ji, and Y. C. Zhao, IEEE Trans. Geosci. Remote Sens., 52, No. 11, 7111–7119 (2014).

    Article  ADS  Google Scholar 

  20. Y. Liu, H. Xie, L. G. Wang, and K. Z. Tan, Appl. Opt., 55, No. 3, 462–472 (2016).

    Article  ADS  Google Scholar 

  21. G. K. Zhu, Y. C. Huang, S. Y. Li, J. Tang, and D. Liang, IEEE Geosci. Remote Sens. Lett., 14, No. 12, 2320–2324 (2017).

    Article  ADS  Google Scholar 

  22. S. Jia, G. H. Tang, J. S. Zhu, and Q. Q. Li, IEEE Trans. Geosci. Remote Sens., 54, No. 1, 88–102 (2016).

    Article  ADS  Google Scholar 

  23. M. Huang, J. Tang, B. Yang, and Q. Zhu, Comput. Electron. Agric., 122, 139–145 (2016).

    Article  Google Scholar 

  24. M. C. U. Araujo, T. C. B. Saldanha, R. K. H. Galvao, T. Yoneyama, H. C. Chame, and V. Visani, Chemometrics Intell. Lab. Syst., 57, No. 2, 65–73 (2001).

    Article  Google Scholar 

  25. Q. Dai, Cheng, J. H. Sun, and X. A. Zeng, J. Food Eng., 136, 64–72 (2014).

  26. Y. He, C. Zhang, F. Liu, W. W. Kong, P. Cui, and W. J. Zhou, Appl. Eng. Agric., 31, No. 1, 23–30 (2015).

    Google Scholar 

  27. Z. Y. Huang, J. Shandong Agric. Univ. (Nat. Sci. Ed.), 44(2), 252–256 (2013).

  28. W. Q. Shang, H. K. Huang, Y. L. Liu, Y. M. Lin, Y. L. Qu, and H. B. Dong, J. Comput. Res. Dev., 43(10), 1688–1694 (2006).

    Google Scholar 

  29. G. B. Huang, Q. Y. Zhu, and C. K. Siew, Neurocomputing, 70, No. 1/2/3, 489–501 (2006).

  30. J. Wang, L. Zhang, J. J. Cao, and D. Han, Int. J. Mach. Learn. Cyber., 9, No. 1, 21–35 (2018).

    Article  Google Scholar 

  31. A. Kadir, Proc. 3rd Int. Symp. "Leaf Identifi cation Using Polar Fourier Transform and Linear Bayes Normal Classifi - er", 40–49 (2015).

  32. T. Cover and P. Hart, IEEE Trans. Inform. Theory, 13, No. 1, 21–27 (1967).

    Article  Google Scholar 

  33. W. Sun, C. F. Wang, and C. C. Zhang, J. Clean Prod., 162, 1095–1101 (2017).

    Article  Google Scholar 

  34. J. Kennedy and R. Eberhart, IEEE Int. Conf. Neural Networks, 4, 1942–1948 (1995).

    Google Scholar 

  35. J. Kennedy and R. C. Eberhart, IEEE Int. Conf. Systems, Man, Cybern. Comput. Cybern. Simul., 5, 4104–4108 (1997).

  36. X. T. Zhao, S. J. Zhang, J. L. Liu, and H. X. Sun, Food Sci. Technol., 33, No. 10, 281–287 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kan.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 1, p. 175, January–February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Kan, J. Classification of Tree Species at the Leaf Level based on Hyperspectral Imaging Technology. J Appl Spectrosc 87, 184–193 (2020). https://doi.org/10.1007/s10812-020-00981-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00981-9

Keywords

Navigation