Skip to main content
Log in

Using Chemical Modifiers and Increasing the Pyrolysis Temperature for High-Sensitivity Spectrometric Determination of Cadmium in Dairy Products

  • Published:
Journal of Applied Spectroscopy Aims and scope

A direct and in situ digestion technique is reported for electrothermal atomic absorption spectrometric analysis of Cd in dairy products. In situ digestion methods offered high sensitivity due to the absence of sample dilution andminimum risk of contamination or analyte loss. Under optimized conditions, the calibration graph was linear in the range of 0–5 ng/mL, with a limit of detection of 0.012 ng/mL. The method was successfully applied in dairy product samples including milks, yogurt, and milk beverages, with spiked recoveries of 91 to 111%. The accuracy of the proposed method was also validated by wet digestion-based method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Ripolles, J. A. Parron, J. Fraguas, M. Calvo, M. D. Perez, and L. Sanchez, J. Dairy Sci., 101, No. 2, 912–923 (2018).

    Article  Google Scholar 

  2. M. Stiboller, G. Raber, E. L. F. Gjengedal, M. Eggesbo, and K. A. Francesconi, Anal. Chem., 89, No. 11, 6266–6272 (2017).

    Article  Google Scholar 

  3. A. El-Hawiet, Y. J. Chen, K. Shams-Ud-Doha, E. N. Kitova, Y. St-Pierre, and J. S. Klassen, Anal. Chem., 89, No. 17, 8713–8722 (2017).

    Article  Google Scholar 

  4. A. T. Smith, D. Barupala, T. L. Stemmler, and A. C. Rosenzweig, Nat. Chem. Biol., 11, N 9, 678 (2015).

  5. S. L. Begg, B. A. Eijkelkamp, Z. Y. Luo, R. M. Counago, J. R. Morey, M. J. Maher, C. L. Y. Ong, A. G. McEwan, B. Kobe, M. L. O’Mara, J. C. Paton, and C. A. McDevitt, Nat. Commun., 6, No. 11 (2015).

  6. P. Pohl, A. Bielawska-Pohl, A. Dzimitrowicz, P. Jamroz, M. Welna, A. Lesniewicz, and A. Szymczycha-Madeja, Trends Anal. Chem., 93, 67–77 (2017).

    Article  Google Scholar 

  7. D. J. Butcher, Appl. Spectrosc. Rev., 52, No. 9, 755–773 (2017).

    Article  ADS  Google Scholar 

  8. M. Y. Burylina and A. A. Pupyshev, J. Anal. Chem., 72, No. 9, 935–946 (2017).

    Article  Google Scholar 

  9. P. Wu, Y. C. Zhang, R. Liu, Y. Lv, and X. D. Hou, Talanta, 77, No. 5, 1778–1782 (2009).

    Article  Google Scholar 

  10. P. Wu, Y. Gao, G. Cheng, W. Yang, Y. Lv, and X. Hou, J. Anal. At. Spectrom., 23, No. 5, 752–757 (2008).

    Article  Google Scholar 

  11. R. Sanchez, S. Maestre, S. Prats, and J. L. Todoli, Anal. Chem., 89, No. 24, 13618–13625 (2017).

    Article  Google Scholar 

  12. P. Jamroz, K. Greda, A. Dzimitrowicz, K. Swiderski, and P. Pohl, Anal. Chem., 89, No. 11, 5730–5734 (2017).

    Article  Google Scholar 

  13. R. Liu, P. Wu, M. Y. Xi, K. L. Xu, and Y. Lv, Talanta, 78, No. 3, 885–890 (2009).

    Article  Google Scholar 

  14. R. Liu, P. Wu, K. L. Xu, Y. Lv, and X. D. Hou, Spectrosc. Acta B: At. Spectrosc., 63, No. 6, 704–709 (2008).

    Article  ADS  Google Scholar 

  15. R. Liu, C. Wang, Y. Xu, J. Hu, D. Deng, and Y. Lv, Anal. Chem., 89, No. 24, 13269–13274 (2017).

    Article  Google Scholar 

  16. R. Liu, S. Zhang, C. Wei, Z. Xing, S. Zhang, and X. Zhang, Acc. Chem. Res., 49, No. 5, 775–783 (2016).

    Article  Google Scholar 

  17. Y. Gao, M. Xu, R. E. Sturgeon, Z. Mester, Z. M. Shi, R. Galea, P. Saull, and L. Yang, Anal. Chem., 87, No. 8, 4495–4502 (2015).

    Article  Google Scholar 

  18. Y. Gao, R. E. Sturgeon, Z. Mester, X. D. Hon, C. B. Zheng, and L. Yang, Anal. Chem., 87, No. 15, 7996-8004 (2015).

    Article  Google Scholar 

  19. R. Liu, X. Liu, Y. R. Tang, L. Wu, X. D. Hou, and Y. Lv, Anal. Chem., 83, No. 6, 2330–2336 (2011).

    Article  Google Scholar 

  20. X. L. Yu and Y. He, Appl. Spectrosc. Rev., 52, No. 7, 605–622 (2017).

    Article  ADS  Google Scholar 

  21. P. Wu, C. H. Li, J. B. Chen, C. B. Zheng, and X. D. Hou, Appl. Spectrosc. Rev., 47, No. 5, 327–370 (2012).

    Article  ADS  Google Scholar 

  22. Q. H. Yin, D. M. Zhu, D. Z. Yang, Q. F. Hu, and Y. L. Yang, J. Appl. Spectrosc., 84, No. 6, 1084–1088 (2018).

    Article  ADS  Google Scholar 

  23. A. N. Zacharia, M. V. Arabadji, and A. N. Chebotarev, J. Appl. Spectrosc., 84, No. 1, 1–7 (2017).

    Article  ADS  Google Scholar 

  24. H. Shirkhanloo, M. Falahnejad, and H. Z. Mousavi, J. Appl. Spectrosc., 82, No. 6, 1072–1077 (2016).

    Article  ADS  Google Scholar 

  25. W. Qiu, Y. Zhang, Y. M. Xu, Q. P. Su, R. Liu, and C. H. Li, Atom. Spectrosc., 35, No. 6, 260–264 (2014).

    Google Scholar 

  26. S. S. D. Borges, M. A. Beinner, and J. B. B. da Silva, Biol. Trace Elem. Res., 167, No. 1, 155–163 (2015).

    Article  Google Scholar 

  27. F. R. de Amorim, M. B. Franco, C. C. Nascentes, and J. B. B. da Silva, Food Anal. Methods, 4, No. 1, 41–48 (2011).

    Article  Google Scholar 

  28. M. V. Reboucas, D. Domingos, A. S. O. Santos, and L. Sampaio, Fuel Process. Technol., 91, No. 11, 1702–1709 (2010).

    Article  Google Scholar 

  29. M. Resano, J. Briceno, and M. A. Belarra, J. Anal. At. Spectrom., 24, No. 10, 1343–1354 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zhang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 1,p. 172, January–February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Xu, M., Zhao, X. et al. Using Chemical Modifiers and Increasing the Pyrolysis Temperature for High-Sensitivity Spectrometric Determination of Cadmium in Dairy Products. J Appl Spectrosc 87, 169–173 (2020). https://doi.org/10.1007/s10812-020-00978-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00978-4

Keywords

Navigation