Skip to main content

Advertisement

Log in

Coupling landscape graph modeling and biological data: a review

  • Review article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

A Correction to this article was published on 15 May 2020

This article has been updated

Abstract

Context

Landscape graphs are widely used to model networks of habitat patches. As they require little input data, they are particularly suitable for supporting conservation decisions (and decisions about other issues as e.g. disease spread) taken by land planners. However, it may be problematic to use these methods in operational contexts without validating them with empirical data on species or communities.

Objectives

Since little is known about methodological alternatives for coupling landscape graphs with biological data, we have made an exhaustive review of these methods to analyze links between the main purposes of the studies, the way landscape graphs are constructed and used, the type of field data, and the way these data are integrated into the analysis.

Methods

We systematically describe a corpus of 71 scientific papers dealing with terrestrial species, with particular emphasis on methodological choices and contexts of the studies.

Results

Despite a great variability of types of biological data and coupling strategies, our analyses reveal a dichotomy according to the objective of the studies, between (i) approaches aimed at improving ecological knowledge, mainly based on land-cover maps and using biological data to test the influence of landscape connectivity on biological responses, and (ii) approaches with an operational aim, in which biological data are directly integrated into the graph construction and assuming a positive effect of connectivity.

Conclusions

Beyond these main contrasts, the review shows that landscape graphs can benefit from field data of different types at varying scales. The great variability of approaches adopted reveals the flexible nature of these tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 15 May 2020

    In the original publication of the article, the sixth author name has been misspelt. The correct name is given in this Correction. The original article has been corrected.

References

  • Allendorf FW, Luikart GH, Aitken SN (2012) Conservation and the genetics of populations, 2nd edn. Wiley Blackwell, New York

    Google Scholar 

  • Andersson E, Bodin O (2009) Practical tool for landscape planning? An empirical investigation of network based models of habitat fragmentation. Ecography 32:123–132

    Article  Google Scholar 

  • Avon C, Bergès L (2016) Prioritization of habitat patches for landscape connectivity conservation differs between least-cost and resistance distances. Landsc Ecol 31:1551–1565

    Article  Google Scholar 

  • Awade M, Boscolo D, Metzger JP (2012) Using binary and probabilistic habitat availability indices derived from graph theory to model bird occurrence in fragmented forests. Landsc Ecol 27:185–198

    Article  Google Scholar 

  • Beier P, Majka DR, Spencer WD (2008) Forks in the road: choices in procedures for designing wildland linkages. Conserv Biol 22:836–851

    Article  PubMed  Google Scholar 

  • Bergerot B, Tournant P, Moussus JP, Stevens V, Julliard R, Baguette M, Foltête JC (2013) Coupling inter-patch movement models and landscape graph to assess functional connectivity. Popul Ecol 55:193–203

    Article  Google Scholar 

  • Bergsten A, Zetterberg A (2013) To model the landscape as a network: a practitioner’s perspective. Landsc Urban Plan 119:35–43

    Article  Google Scholar 

  • Betbeder J, Laslier M, Hubert-Moy L, Burel F, Baudry J (2017) Synthetic Aperture Radar (SAR) images improve habitat suitability models. Landsc Ecol 32:1867–1879

    Article  Google Scholar 

  • Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manag 59:265–278

    Article  Google Scholar 

  • Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2:529–536

    Article  Google Scholar 

  • Clauzel C, Girardet X, Foltête JC (2013) Impact assessment of a high-speed railway line on species distribution: application to the European tree frog (Hyla arborea) in Franche-Comté. J Environ Manag 127:125–134

    Article  Google Scholar 

  • Clevenger AP, Wierzchowski J, Chruszcz B, Gunson K (2002) GIS-generated, expert-based models for identifying wildlife habitat linkages and planning mitigation passages. Conserv Biol 16:503–514

    Article  Google Scholar 

  • Correa Ayram CA, Mendoza ME, Etter A, Pérez Salicrup DR (2016) Habitat connectivity in biodiversity conservation: a review of recent studies and applications. Prog Phys Geogr 40:7–37

    Article  Google Scholar 

  • Crooks KR, Sanjayan M (eds) (2006) Connectivity conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJ Complex Syst 1695:1–9

    Google Scholar 

  • Cushman SA, McRae B, Adriaensen F, Beier P, Shirley M, Zeller K (2013) Biological corridors and connectivity. In: Macdonald DW, Willis KJ (eds) Key topics in conservation biology 2. Wiley-Blackwell, Malden, pp 384–404

    Chapter  Google Scholar 

  • Dale MRT, Fortin MJ (2010) From graphs to spatial graphs. Annu Rev Ecol Evol Syst 41:21–38

    Article  Google Scholar 

  • Dondina O, Saura S, Bani L, Mateo-Sánchez MC (2018) Enhancing connectivity in agroecosystems: focus on the best existing corridors or on new pathways? Landsc Ecol 33:1741–1756

    Article  Google Scholar 

  • Duflot R, Avon C, Roche P, Bergès L (2018) Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: an applied methodological framework and a species case study. J Nat Conserv 46:38–47

    Article  Google Scholar 

  • Estrada-Peña A (2005) Effects of habitat suitability and landscape patterns on tick (Acarina) metapopulation processes. Landsc Ecol 20:529–541

    Article  Google Scholar 

  • Fall A, Fortin MJ, Manseau M, O’Brien D (2007) Spatial graphs: principles and applications for habitat connectivity. Ecosystems 10:448–461

    Article  Google Scholar 

  • Fletcher RJ, Burrel NS, Reichert BE, Vasudev D, Austin JD (2016) Divergent perspectives on landscape connectivity reveal consistent effects from genes to communities. Curr Landsc Ecol Rep 1:67–79

    Article  Google Scholar 

  • Foltête JC, Clauzel C, Vuidel G (2012a) A software tool dedicated to the modelling of landscape networks. Environ Model Softw 38:316–327

    Article  Google Scholar 

  • Foltête JC, Clauzel C, Vuidel G, Tournant P (2012b) Integrating graph-based connectivity metrics into species distribution models. Landsc Ecol 27:557–569

    Article  Google Scholar 

  • Foltête JC, Girardet X, Clauzel C (2014) A methodological framework for the use of landscape graphs in land-use planning. Landsc Urban Plan 124:140–150

    Article  Google Scholar 

  • Foltête JC, Giraudoux P (2012) A graph-based approach to investigating the influence of the landscape on population spread processes. Ecol Indic 18:684–692

    Article  Google Scholar 

  • Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144:44–55

    Article  Google Scholar 

  • Galpern P, Manseau M, Wilson P (2012) Grains of connectivity: analysis at multiple spatial scales in landscape genetics. Mol Ecol 21:3996–4009

    Article  PubMed  Google Scholar 

  • Gil-Tena A, Nabucet J, Mony C, Abadie J, Saura S, Butet A, Burel F, Ernoult A (2014) Woodland bird response to landscape connectivity in an agriculture-dominated landscape: a functional community approach. Community Ecol 15:256–268

    Article  Google Scholar 

  • Gippoliti S, Battisti C (2017) More cool than tool: equivoques, conceptual traps and weaknesses of ecological networks in environmental planning and conservation. Land Use Policy 68:686–691

    Article  Google Scholar 

  • Kadoya T (2008) Assessing functional connectivity using empirical data. Popul Ecol 51:5–15

    Article  Google Scholar 

  • Keller D, Holderegger R, Van Strien MJ (2013) Spatial scale affects landscape genetic analysis of a wetland grasshopper. Mol Ecol 22:2467–2482

    Article  PubMed  Google Scholar 

  • Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064

    Article  Google Scholar 

  • Khimoun A, Peterman W, Eraud C, Faivre B, Navarro N, Garnier S (2017) Landscape genetic analyses reveal fine-scale effects of forest fragmentation in an insular tropical bird. Mol Ecol 26:4906–4919

    Article  CAS  PubMed  Google Scholar 

  • Koh I, Rowe HI, Holland JD (2013) Graph and circuit theory connectivity models of conservation biological control agents. Ecol Appl 23:1554–1573

    Article  PubMed  Google Scholar 

  • Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191

    Article  CAS  PubMed  Google Scholar 

  • Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change; an ecological and conservation synthesis. Island Press, Washington

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Martensen AG, Saura S, Fortin MJ (2017) Spatio-temporal connectivity: assessing the amount of reachable habitat in dynamic landscapes. Methods Ecol Evol 8:1253–1264

    Article  Google Scholar 

  • Martín-Queller E, Albert CH, Dumas PJ, Saatkamp A (2017) Islands, mainland, and terrestrial fragments: how isolation shapes plant diversity. Ecol Evol 7:6904–6917

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín-Queller E, Saura S (2013) Landscape species pools and connectivity patterns influence tree species richness in both managed and unmanaged stands. For Ecol Manag 289:123–132

    Article  Google Scholar 

  • Melles S, Fortin MJ, Badzinski D, Lindsay K (2012) Relative importance of nesting habitat and measures of connectivity in predicting the occurrence of a forest songbird in fragmented landscapes. Avian Conserv Ecol 7(2):3

    Google Scholar 

  • Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22:297–307

    Article  PubMed  Google Scholar 

  • Moilanen A (2011) On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J Appl Ecol 48:1543–1547

    Article  Google Scholar 

  • Mony C, Abadie J, Gil-Tena A, Burel F, Ernoult A (2018) Effects of connectivity on animal-dispersed forest plant communities in agriculture-dominated landscapes. J Veg Sci 29:167–178

    Article  Google Scholar 

  • Morán-López T, Robledo-Arnuncio JJ, Díaz M, Morales JM, Lázaro-Nogal A, Lorenzo Z, Valladares F (2016) Determinants of functional connectivity of holm oak woodlands: fragment size and mouse foraging behavior. For Ecol Manag 368:111–122

    Article  Google Scholar 

  • Muratet A, Lorrillière R, Clergeau P, Fontaine C (2013) Evaluation of landscape connectivity at community level using satellite-derived NDVI. Landsc Ecol 28:95–105

    Article  Google Scholar 

  • Neel MC (2008) Patch connectivity and genetic diversity conservation in the federally endangered and narrowly endemic plant species Astragalus albens (Fabaceae). Biol Conserv 141:938–955

    Article  Google Scholar 

  • O’Brien D, Manseau M, Fall A, Forti MJ (2006) Testing the importance of spatial configuration of winter habitat for woodland caribou: an application of graph theory. Biol Conserv 130:70–83

    Article  Google Scholar 

  • Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landsc Ecol 21:959–967

    Article  Google Scholar 

  • Pe’er G, Salz D, Frank K (2005) Virtual corridors for conservation management. Conserv Biol 16:1997–2003

    Article  Google Scholar 

  • Peterman WE, Connette GM, Semlitsch RD, Eggert LS (2014) Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol Ecol 23:2402–2413

    Article  PubMed  Google Scholar 

  • Pianosi F, Beven K, Freer J, Hall JW, Rougier J, Stephenson DB, Wagener T (2016) Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ Model Softw 79:214–232

    Article  Google Scholar 

  • Poor EE, Shao Y, Kelly MJ (2019) Mapping and predicting forest loss in a Sumatran tiger landscape from 2002 to 2050. J Environ Manag 231:397–404

    Article  Google Scholar 

  • Pressey RL (2004) Conservation planning and biodiversity: assembling the best data for the job. Conserv Biol 18:1677–1681

    Article  Google Scholar 

  • Rayfield B, Fortin MJ, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92:847–858

    Article  PubMed  Google Scholar 

  • Ribeiro R, Carretero MA, Sillero N, Alarcos G, Ortiz-Santaliestra M, Lizana M, Llorente GA (2011) The pond network: can structural connectivity reflect on (amphibian) biodiversity patterns? Landsc Ecol 26:673–682

    Article  Google Scholar 

  • Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103

    Article  Google Scholar 

  • Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33:523–537

    Google Scholar 

  • Saura S, Torné J (2009) ConeforSensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24:135–139

    Article  Google Scholar 

  • Schoville SD, Dalongeville A, Viennois G, Gugerli F, Taberlet P, Lequette B, Alvarez N, Manel S (2018) Preserving genetic connectivity in the European Alps protected area network. Biol Conserv 218:99–109

    Article  Google Scholar 

  • Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619

    Article  CAS  PubMed  Google Scholar 

  • Song W, Kim E (2016) Landscape factors affecting the distribution of the great tit in fragmented urban forests of Seoul, South Korea. Landsc Ecol Engine 12:73–83

    Article  Google Scholar 

  • Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner KIM (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

    Article  PubMed  Google Scholar 

  • Taberlet P, Zimmermann NE, Englisch T, Tribsch A, Holderegger R, Nadir Alvarez N, Niklfeld H, Coldea G, Mirek Z, Moilanen A, Ahlmer W, Ajmone-Marsan P, Bona E, Bovio M, Choler P, Cieślak E, Colli L, Cristea V, Dalmas JP, Frajman B, Garraud G, Gaudeul M, Gielly L, Gutermann W, Jogan N, Kagalo AA, Korbecka G, Küpfer P, Lequette B, Roman Letz D, Manel S, Mansion G, Marhold K, Martini F, Negrini R, Niño F, Paun O, Pellecchia M, Perico G, Piękoś-Mirkowa H, Prosser F, Puşcaş M, Ronikier M, Scheuerer M, Schneeweiss GM, Schönswetter P, Schratt-Ehrendorfer L, Schüpfer F, Selvaggi A, Steinmann K, Thiel-Egenter C, van Loo M, Winkler M, Wohlgemuth T, Wraber T, Gugerli F, IntraBioDiv Consortium (2012) Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol Lett 15:1439–1448

    Article  PubMed  Google Scholar 

  • Tannier C, Bourgeois M, Houot H, Foltête JC (2016) Impact of urban developments on the functional connectivity of forested habitats: a joint contribution of advanced urban models and landscape graphs. Land Use Policy 52:76–91

    Article  Google Scholar 

  • Tenenhaus M, Young FW (1985) An analysis and synthesis of multiple correspondence analysis, optimal scaling, homogeneity analysis and other methods for quantifying categorical multivariate data. Psychometrika 50:91–119

    Article  Google Scholar 

  • Tournant P, Afonso E, Giraudoux P, Roué S, Foltête JC (2013) Evaluating the effect of habitat connectivity on the distribution of lesser horseshoe bat maternity roosts using landscape graphs. Biol Conserv 164:39–49

    Article  Google Scholar 

  • Urban DL, Keitt TH (2001) Landscape connectivity: a graph theoretic approach. Ecology 82:1205–1218

    Article  Google Scholar 

  • Urban DL, Minor ES, Treml EA, Schick RS (2009) Graph models of land mosaics. Ecol Lett 12:260–273

    Article  PubMed  Google Scholar 

  • Vellend M, Geber MA (2005) Connections between species and genetic diversity. Ecol Lett 8:767–781

    Article  Google Scholar 

  • Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landsc Ecol 25:1601–1612

    Article  Google Scholar 

  • Zeller KA, Jennings MK, Vickers TW, Ernest HB, Cushman SA, Boyce WM (2018) Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Divers Distrib 24:868–879

    Article  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Lands Ecol 27:777–797

    Article  Google Scholar 

  • Zetterberg A, Mörtberg UM, Balfors B (2010) Making graph theory operational for landscape ecological assessments, planning, and design. Landsc Urban Plan 95:191–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Foltête.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: the sixth author name was updated.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foltête, JC., Savary, P., Clauzel, C. et al. Coupling landscape graph modeling and biological data: a review. Landscape Ecol 35, 1035–1052 (2020). https://doi.org/10.1007/s10980-020-00998-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-00998-7

Navigation