Skip to main content
Log in

Dissipative control of interval type-2 nonhomogeneous Markovian jump fuzzy systems with incomplete transition descriptions

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the problem of designing a dissipative controller for interval type-2 nonhomogeneous Markovian jump fuzzy systems (MJFSs) with incomplete transition descriptions. To explore a generalized model for MJFSs under realistic situations, the coexistence of incompletely known transition rates and mismatched membership functions is considered in MJFS models, and the corresponding stabilization conditions are derived in terms of multi-parameterized linear matrix inequalities (M-PLMIs). In addition, to handle the problem of M-PLMIs, two novel relaxation techniques are additionally proposed such that the use of redundant constraints on multiple time-varying parameters can be significantly reduced. Finally, the validity of the proposed method is demonstrated via two illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aberkane, S.: Stochastic stabilization of a class of nonhomogeneous Markovian jump linear systems. Syst. Control Lett. 60(3), 156–160 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Arrifano, N., Oliveira, V., Ramos, R.A., Bretas, N.G., Oliveira, R.: Fuzzy stabilization of power systems in a co-generation scheme subject to random abrupt variations of operating conditions. IEEE Trans. Control Syst. Technol. 15(2), 384–393 (2007)

    Google Scholar 

  3. Arrifano, N.S., Oliveira, V.A.: Robust \(\cal{H}_\infty \) fuzzy control approach for a class of Markovian jump nonlinear systems. IEEE Trans. Fuzzy Syst. 14(6), 738–754 (2006)

    Google Scholar 

  4. Banu, L.J., Balasubramaniam, P.: Robust stability and stabilization analysis for discrete-time randomly switched fuzzy systems with known sojourn probabilities. Nonlinear Anal. Hybrid Syst. 17, 128–143 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Begovich, O., Sanchez, E.N., Maldonado, M.: Takagi–Sugeno fuzzy scheme for real-time trajectory tracking of an underactuated robot. IEEE Trans. Control Syst. Technol. 10(1), 14–20 (2002)

    Google Scholar 

  6. Boukas, E.K.: Control of singular systems with random abrupt changes. Springer-Verlag, Berlin, Heidelberg (2008)

    MATH  Google Scholar 

  7. Butler, E.J., Wang, H.O., Burken, J.J.: Takagi–Sugeno fuzzy model-based flight control and failure stabilization. J. Guid. Control Dyn. 34(5), 1543–1555 (2011)

    Google Scholar 

  8. Cao, J., Li, P., Liu, H.: An interval fuzzy controller for vehicle active suspension systems. IEEE Trans. Intell. Transp. Syst. 11(4), 885–895 (2010)

    Google Scholar 

  9. Cheng, J., Park, J.H., Karimi, H.R., Shen, H.: A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals. IEEE Trans. Cybern. 48(8), 2232–2244 (2017)

    Google Scholar 

  10. Hagras, H.: Type-2 flcs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)

    Google Scholar 

  11. Hagras, H.A.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12(4), 524–539 (2004)

    Google Scholar 

  12. Karan, M., Shi, P., Kaya, C.Y.: Transition probability bounds for the stochastic stability robustness of continuous-and discrete-time markovian jump linear systems. Automatica 42(12), 2159–2168 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Kaviarasan, B., Sakthivel, R., Kwon, O.: Robust fault-tolerant control for power systems against mixed actuator failures. Nonlinear Anal. Hybrid Syst. 22, 249–261 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Kayacan, E., Kaynak, O.: Sliding mode control theory-based algorithm for online learning in type-2 fuzzy neural networks: application to velocity control of an electro hydraulic servo system. Int. J. Adapt. Control Signal Process. 26(7), 645–659 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Kim, S.H.: Delay-dependent stability analysis for singular Markovian jump systems with incomplete transition probabilities. J. Franklin Inst. 352(1), 236–247 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Kim, S.H.: \(\cal{H}_2\) control of Markovian jump LPV systems with measurement noises: application to a dc-motor device with voltage fluctuations. J. Franklin Inst. 354(4), 1784–1800 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Kim, S.H.: Improved relaxation method for control design of non-homogeneous Markovian jump fuzzy systems with general transition descriptions. IET Control Theory Appl. 12(1), 155–162 (2018)

    MathSciNet  Google Scholar 

  18. Kim, S.H.: Asynchronous dissipative filter design of nonhomogeneous Markovian jump fuzzy systems via relaxation of triple-parameterized matrix inequalities. Inf. Sci. 478, 564–579 (2019)

    MathSciNet  Google Scholar 

  19. Kim, S.H.: Dissipative control of Markovian jump fuzzy systems under nonhomogeneity and asynchronism. Nonlinear Dyn. 1–18 (2019)

  20. Kim, S.H.: Generalized relaxation techniques for robust \(\cal{H}_\infty \) filtering of nonhomogeneous Markovian jump systems. Appl. Math. Comput. 347, 542–556 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Kim, S.H.: Robust \(\cal{H}_\infty \) filtering of discrete-time nonhomogeneous Markovian jump systems with dual-layer operation modes. J. Franklin Inst. 356(1), 697–717 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Kwon, N.K., Park, B.Y., Park, P., Park, I.S.: Improved \(\cal{H}_\infty \) state-feedback control for continuous-time Markovian jump fuzzy systems with incomplete knowledge of transition probabilities. J. Frankl. Inst. 353(15), 3985–3998 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Kwon, N.K., Park, I.S., Park, P.: \(\cal{H}_\infty \) state-feedback control for continuous-time Markovian jump fuzzy systems using a fuzzy weighting-dependent Lyapunov function. Nonlinear Dyn. 90(3), 2001–2011 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Lam, H.K., Li, H., Deters, C., Secco, E.L., Wurdemann, H.A., Althoefer, K.: Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans. Ind. Electron. 61(2), 956–968 (2013)

    Google Scholar 

  25. Lam, H.K., Seneviratne, L.D.: Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(3), 617–628 (2008)

    Google Scholar 

  26. Li, H., Sun, X., Wu, L., Lam, H.K.: State and output feedback control of interval type-2 fuzzy systems with mismatched membership functions. IEEE Trans. Fuzzy Syst. 23(6), 1943–1957 (2015)

    Google Scholar 

  27. Li, X., Lam, J., Gao, H., Xiong, J.: \(\cal{H}_\infty \) and \(\cal{H}_2\) filtering for linear systems with uncertain Markov transitions. Automatica 67, 252–266 (2016)

    Google Scholar 

  28. Li, Z.X., Park, J.H., Wu, Z.G.: Synchronization of complex networks with nonhomogeneous Markov jump topology. Nonlinear Dyn. 74(1–2), 65–75 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Lin, P.Z., Lin, C.M., Hsu, C.F., Lee, T.T.: Type-2 fuzzy controller design using a sliding-mode approach for application to DC–DC converters. IEE J. Electr. Power Appl. 152(6), 1482–1488 (2005)

    Google Scholar 

  30. Liu, H., Ho, D.W., Sun, F.: Design of \(\cal{H}_\infty \) filter for Markov jumping linear systems with non-accessible mode information. Automatica 44(10), 2655–2660 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Liu, J., Wu, C., Wang, Z., Wu, L.: Reliable filter design for sensor networks using type-2 fuzzy framework. IEEE Trans. Ind. Inf. 13(4), 1742–1752 (2017)

    Google Scholar 

  32. Liu, M., Ho, D.W., Niu, Y.: Stabilization of Markovian jump linear system over networks with random communication delay. Automatica 45(2), 416–421 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Long, Y., Park, J.H., Ye, D.: Finite frequency fault detection for a class of nonhomogeneous Markov jump systems with nonlinearities and sensor failures. Nonlinear Dyn. 96(1), 285–299 (2019)

    Google Scholar 

  34. Lu, Z., Ran, G., Xu, F., Lu, J.: Novel mixed-triggered filter design for interval type-2 fuzzy nonlinear Markovian jump systems with randomly occurring packet dropouts. Nonlinear Dyn. 1–16 (2019)

  35. Ma, S., Peng, C., Song, Y., Du, D.: Networked \(\cal{H}_\infty \) filtering for Markovian jump T-S fuzzy systems with imperfect premise matching. IET Signal Process. 11(3), 304–312 (2016)

    Google Scholar 

  36. Mendel, J.M.: Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag. 2(1), 20–29 (2007)

    Google Scholar 

  37. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)

    Google Scholar 

  38. Meskin, N., Khorasani, K.: A geometric approach to fault detection and isolation of continuous-time Markovian jump linear systems. IEEE Trans. Autom. Control 55(6), 1343–1357 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Morais, C.F., Braga, M.F., Oliveira, R.C., Peres, P.L.: \(\cal{H}_2\) control of discrete-time Markov jump linear systems with uncertain transition probability matrix: improved linear matrix inequality relaxations and multi-simplex modelling. IET Control Theory Appl. 7(12), 1665–1674 (2013)

    MathSciNet  Google Scholar 

  40. Pan, Y., Yang, G.H.: Event-triggered fault detection filter design for nonlinear networked systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 48(11), 1851–1862 (2017)

    Google Scholar 

  41. Park, I.S., Kwon, N.K., Park, P.: \(\cal{H}_\infty \) control for Markovian jump fuzzy systems with partly unknown transition rates and input saturation. J. Franklin Inst. 355(5), 2498–2514 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Sauter, D., Li, S., Aubrun, C.: Robust fault diagnosis of networked control systems. Int. J. Adapt. Control Signal Process. 23(8), 722–736 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Shi, P., Zhang, Y., Chadli, M., Agarwal, R.K.: Mixed \(\cal{H}_\infty \) and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Trans. Neural Networks Learn. Syst. 27(4), 903–909 (2015)

    MathSciNet  Google Scholar 

  44. Siqueira, A.A., Terra, M.H.: Nonlinear and Markovian \(\cal{H}_\infty \) controls of underactuated manipulators. IEEE Trans. Control Syst. Technol. 12(6), 811–826 (2004)

    Google Scholar 

  45. Song, M.K., Park, J.B., Joo, Y.H.: Stability and stabilization for discrete-time Markovian jump fuzzy systems with time-varying delays: partially known transition probabilities case. Int. J. Control Autom. Syst. 11(1), 136–146 (2013)

    Google Scholar 

  46. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. In: Readings in Fuzzy Sets for Intelligent Systems, pp. 387–403. Elsevier (1993)

  47. Tan, Z., Soh, Y.C., Xie, L.: Dissipative control for linear discrete-time systems. Automatica 35(9), 1557–1564 (1999)

    MathSciNet  MATH  Google Scholar 

  48. Tanaka, K., Wang, H.O.: Fuzzy control systems design and analysis: a linear matrix inequality approach. John Wiley & Sons, Inc. (2001)

  49. Ugrinovskii, V., Pota, H.R.: Decentralized control of power systems via robust control of uncertain Markov jump parameter systems. Int. J. Control 78(9), 662–677 (2005)

    MathSciNet  MATH  Google Scholar 

  50. Wang, J., Chen, M., Shen, H.: Event-triggered dissipative filtering for networked semi-Markov jump systems and its applications in a mass-spring system model. Nonlinear Dyn. 87(4), 2741–2753 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Wu, H.N., Cai, K.Y.: Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(3), 509–519 (2006)

    Google Scholar 

  52. Wu, L., Su, X., Shi, P.: Output feedback control of Markovian jump repeated scalar nonlinear systems. IEEE Trans. Autom. Control 59(1), 199–204 (2013)

    MathSciNet  MATH  Google Scholar 

  53. Zhang, H., Wang, J., Shi, Y.: Robust \(\cal{H}_\infty \) sliding-mode control for Markovian jump systems subject to intermittent observations and partially known transition probabilities. Syst. Control Let. 62(12), 1114–1124 (2013)

    MathSciNet  MATH  Google Scholar 

  54. Zhang, L., Hua, M., Yao, F., Ni, J., Dai, W., Cheng, Y.: Non-fragile \(l_2-l_\infty \) filtering for nonhomogeneous Markov jump systems with randomly occurring uncertainties and gain variations. J. Franklin Inst. 354(16), 7521–7542 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Zhang, L., Lam, J.: Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with incomplete transition descriptions. IEEE Trans. Autom. Control 55(7), 1695–1701 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2018R1D1A1B07041456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hyun Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.B., Kim, S.H. Dissipative control of interval type-2 nonhomogeneous Markovian jump fuzzy systems with incomplete transition descriptions. Nonlinear Dyn 100, 1289–1308 (2020). https://doi.org/10.1007/s11071-020-05564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05564-z

Keywords

Navigation