Skip to main content
Log in

Design and preparation of a VO2-based high-performance metamaterial for smart windows

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Vanadium dioxide (VO2) is an ideal material for smart windows, which can initiate an automatic reversible metal-to-insulator transition from tetragonal to monoclinic structure at the transition temperature (Tc) of 68 °C, resulting in a large difference in near-infrared transmittance, but its application is limited by the poor luminous transmittance (Tlum) and low solar modulation ability (ΔTsol). Besides, metamaterials have shown their superiority as one of the strong competitors and candidates according to previous researches. In this paper, a VO2-based metamaterial structure (VO2(ms), where “ms” is an abbreviation for metamaterial structure) uniformly distributed with round holes was introduced to form a VO2(ms)/TiO2/VO2 multilayer structure, which is designed and produced by simulation and polystyrene microsphere-assisted preparation for enhanced performance. The simulation results obtained a considerable Tlum up to 50.4% and an ultra-high ΔTsol of 22.8%; this is due to the introduction of VO2(ms) which causes the multilayer structure to form metal–insulator–metal cavities at high temperatures and produces a resonance absorption effect. Meanwhile, it is found that the spacing of the round holes (D) has a great influence on the performance of the structure; specifically, an increase in D results in a slight decrease in both ΔTsol and Tlum. Moreover, the experimentally prepared sample demonstrated a ΔTsol of 20.4% and a Tlum of 42.6%, slightly lower than simulation because it has a larger spacing D, which is consistent with the analysis. In summary, both simulation and experiment can get ultra-high ΔTsol while guaranteeing a high Tlum. Such enhanced performance will benefit the application for VO2-based smart windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Li, S. Ji, Y. Gao, H. Luo, M. Kanehira, Core–shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings. J. Sci. Rep. 3, 1370 (2013)

    Article  ADS  Google Scholar 

  2. G.Y. Sun, X. Cao, H. Zhou, S. Bao, P. Jin, A novel multifunctional thermochromic structure with skin comfort design for smart window application. J. Sol. Energy Mater. Sol. Cells 159, 553–559 (2017)

    Article  Google Scholar 

  3. F.J. Morin, Oxides which show a metal-to-insulator transition at the neel temperature. J. Phys. Rev. Lett. 3(1), 34–36 (1959)

    Article  ADS  Google Scholar 

  4. D. Singh, B. Viswanath, Direct measurement of nanomechanical actuation across phase transition in VO2 crystals. J. Scr. Mater. 141, 24–27 (2017)

    Article  Google Scholar 

  5. T.C. Chang, X. Cao, S.H. Bao, S.D. Ji, H.J. Luo, P. Jin, Review on thermochromic vanadium dioxide based smart coatings: from lab to commercial application. J. Adv. Manuf. 6(1), 1–19 (2018)

    Article  Google Scholar 

  6. L. Kang, Y. Gao, H. Luo, Z. Chen, Z. Zhang, Nanoporous thermochromic VO2 films with low optical constants, enhanced luminous transmittance and thermochromic properties. J. ACS Appl. Mater. Interfaces 3(2), 135–138 (2011)

    Article  Google Scholar 

  7. M. Panagopoulou, E. Gagaoudakis, N. Boukos, E. Aperathitis, G. Kiriakidis, D. Tsoukalas, Y.S. Raptis, Thermochromic performance of Mg-doped VO2 thin films on functional substrates for glazing applications. J. Sol. Energy Mater. Sol. Cells 157, 1004–1010 (2016)

    Article  Google Scholar 

  8. S. Long, H. Zhou, S. Bao, Y. Xin, P. Jin, Thermochromic multilayer films of WO3/VO2/WO3 sandwich-structure with enhanced luminous transmittance and durability. J. RSC Adv. 6(108), 106435–106442 (2016)

    Article  Google Scholar 

  9. G. Sun, X. Cao, X. Gao, S. Long, P. Jin, Structure and enhanced thermochromic performance of low-temperature fabricated VO2/V2O3 thin film. J. Appl. Phys. Lett. 109(14), 34 (2016)

    Article  Google Scholar 

  10. M.H. Lee, J.S. Cho, Better thermochromic glazing of windows with anti-reflection coating. J. Thin Solid Films 365(1), 5–6 (2000)

    Article  ADS  Google Scholar 

  11. P. Jin, G. Xu, M. Tazawa, K. Yoshimura, A VO2-based multifunctional window with highly improved luminous transmittance. Jpn. J. Appl. Phys. 41(2), L278–L280 (2002)

    Article  ADS  Google Scholar 

  12. G. Xu, P. Jin, M. Tazawa, K. Yoshimura, Optimization of antireflection coating for VO2-based energy efficient window. J. Sol. Energy Mater. Sol. Cells 83(1), 29–37 (2004)

    Article  Google Scholar 

  13. B. Zhu, H. Tao, X. Zhao, Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering. J. Infrared Phys. Technol. 75, 22–25 (2016)

    Article  ADS  Google Scholar 

  14. M. Panagopoulou, E. Gagaoudakis, E. Aperathitis, I. Michail, G. Kiriakidis, D. Tsoukalas, Y.S. Raptis, The effect of buffer layer on the thermochromic properties of undoped radio frequency sputtered VO2 thin films. Thin Solid Films 594, 310–315 (2015)

    Article  ADS  Google Scholar 

  15. H. Koo, L. Xu, K.E. Ko, S. Ahn, S.H. Chang, C. Park, Effect of oxide buffer layer on the thermochromic properties of VO2 thin films. J. Mater. Eng. Perform. 22(12), 3967–3973 (2013)

    Article  Google Scholar 

  16. H. Koo, H. You, K.E. Ko, O.J. Kwon, S.H. Chang, C. Park, Thermochromic properties of VO2 thin film on SiNx buffered glass substrate. Appl. Surf. Sci. 277, 237–241 (2013)

    Article  ADS  Google Scholar 

  17. T. Chang, X. Cao, N. Li, S. Long, P. Jin, Facile and low-temperature fabrication of thermochromic Cr2O3/VO2 smart coatings: enhanced solar modulation ability, high luminous transmittance and UV-shielding function. J. ACS Appl. Mater. Interfaces 9(31), 26029–26037 (2017)

    Article  Google Scholar 

  18. P. Jin, G. Xu, M. Tazawa, K. Yoshimura, Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings. J. Appl. Phys. A (Mater. Sci. Process.) 77(3–4), 455–459 (2003)

    Article  ADS  Google Scholar 

  19. N.R. Mlyuka, G.A. Niklasson, C.G. Granqvist, Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance. J. Sol. Energy Mater. Sol. Cells 93(9), 1685–1687 (2009)

    Article  Google Scholar 

  20. M.J. Powell, R. Quesada-Cabrera, A. Taylor, D. Teixeira, I. Papakonstantinou, R.G. Palgrave et al., Intelligent multifunctional VO2/SiO2/TiO2 coatings for self-cleaning, energy-saving window panels. J. Chem. Mater. 28(5), 1369–1376 (2016)

    Article  Google Scholar 

  21. Makhes K. Behera, Leslie C. Williams, Sangram K. Pradhan, Messaoud Bahoura, Reduced transition temperature in Al:Zno/VO2 based multi-layered device for low powered smart window application. Sci. Rep. 10(1), 1824 (2020)

    Article  ADS  Google Scholar 

  22. T. Chang, X. Cao, L.R. Dedon, S. Long, A. Huang, Z. Shao et al., Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings. J. Nano Energy 44, 256–264 (2018)

    Article  ADS  Google Scholar 

  23. S. Dou, J. Zhao, W. Zhang, H. Zhao, F. Ren, L. Zhang, X. Chen, Y. Zhan, Y. Li, A universal approach to achieve high luminous transmittance and solar modulating ability simultaneously for vanadium dioxide smart coatings via double-sided localized surface plasmon resonances. ACS Appl. Mater. Interfaces 12, 7302–7309 (2020)

    Article  Google Scholar 

  24. K. Li, M. Li, C. Xu, Y. Luo, G. Li, VO2(M) nanoparticles with controllable phase transition and high nanothermochromic performance. J. Alloys Compd. 816, 152655 (2020)

    Article  Google Scholar 

  25. A. Sihvola, Metamaterials in electromagnetics. Metamaterials 1(1), 2–11 (2007)

    Article  ADS  Google Scholar 

  26. C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. J. Adv. Mater. 24(23), 98–120 (2012)

    Google Scholar 

  27. Y. Li, S. Ji, Y. Gao, H. Luo, S. Li, M. Jiang, Y. Zhou, R. Li, B. Wang, P. Jin, Core-regenerated vapor–solid growth of hierarchical stem-like VOx nanocrystals on VO2@ TiO2 core–shell nanorods: microstructure and mechanism. J. Cryst. Eng. Commun. 15(41), 8330–8336 (2013)

    Article  Google Scholar 

  28. T.L. Cocker, L.V. Titova, S. Fourmaux, H.C. Bandulet, F.A. Hegmann, Terahertz conductivity of the metal–insulator transition in a nanogranular VO2 film. J. Appl. Phys. Lett. 97(22), 221905 (2010)

    Article  ADS  Google Scholar 

  29. M. Walther, D.G. Cooke, C. Sherstan, M. Hajar, M.R. Freeman, F.A. Hegmann, Terahertz conductivity of thin gold films at the metal–insulator percolation transition. J. Phys. Rev. B 76(12), 125408 (2007)

    Article  ADS  Google Scholar 

  30. C.N. Berglund, H.J. Guggenheim, Electronic properties of VO2 near the semiconductor–metal transition. J. Phys. Rev. 185(3), 1022–1033 (1969)

    Article  ADS  Google Scholar 

  31. Z.J. Xu, F. Zhang, R.J. Zhang, X. Yu, D.X. Zhang, Z.Y. Wang et al., Thickness dependent optical properties of titanium oxide thin films. J. Appl. Phys. A 113(3), 557–562 (2013)

    Article  ADS  Google Scholar 

  32. S.R. Wu, K.L. Lai, C.M. Wang, Passive temperature control based on a phase change metasurface. J. Sci. Rep. 8(1), 7684 (2018)

    Article  ADS  Google Scholar 

  33. M. Zhong, S.J. Liu, B.L. Xu, J. Wang, H.Q. Huang, Design and measuring of a tunable hybrid metamaterial absorber for terahertz frequencies. J. Opt. Mater. 78, 1–7 (2018)

    Article  Google Scholar 

  34. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. J. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 71(3), 36617 (2005)

    Article  ADS  Google Scholar 

  35. Q. Li, Z. Li, X. Wang, T. Wang, H. Liu, H. Yang et al., Structurally tunable plasmonic absorption bands in self-assembled nano hole array. J. Nanoscale 10(40), 19117–19124 (2018)

    Article  Google Scholar 

  36. S.L. Yang, D.M. Yu, G.D. Liu, Q. Lin, X. Zhai, L.L. Wang, Perfect plasmon-induced absorption and its application for multi-switching in simple plasmonic system. J. Plasmon. 13(3), 1015–1020 (2017)

    Article  Google Scholar 

  37. Z. Zhang, J. Yang, X. He, Y. Han, J. Zhang, J. Huang, D. Chen, S. Xu, All-optical multi-channel switching at telecommunication wavelengths based on tunable plasmon-induced transparency. Opt. Commun. 425, 196–203 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (No. 61421002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Wu or Xiang Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

XRD pattern of the sample with VO2–TiO2–VO2 structure (JPEG 48 kb)

Fig. S2

Effect of the distance (D) between adjacent round holes on Tlum and ΔTsol (JPEG 61 kb)

Fig. S3

Transmittance–temperature curve of the sample (solid is the heating curve, and hollow is the cooling curve) (JPEG 74 kb)

Fig. S4

Calculation of the phase transition temperature of the sample (the solid line is heating, and the dashed line is cooling) (JPEG 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Wu, Z., Wu, X. et al. Design and preparation of a VO2-based high-performance metamaterial for smart windows. Appl. Phys. A 126, 295 (2020). https://doi.org/10.1007/s00339-020-03469-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03469-7

Keywords

Navigation