Skip to main content
Log in

Self-assembly of octanethiol on oxide-free cobalt electrode from aqueous solution under electrochemical control

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Self-assembly of alkanethiols on Co surface from organic solution has met with limited success due to the presence of the native oxides. A way needs to be found to remove any oxide and form perfect self-assembled monolayers (SAMs). We report the development of electrochemical approach for formation of alkanethiol self-assembled monolayers on base metals in aqueous solutions. For formation of octanethiol (OT) SAMs on oxide-free cobalt surfaces, we combine the surface renewal technique with in situ electrochemical procedure of removing the native oxide, thiol adsorption, and electrochemical control of SAMs properties in one aqueous solution. The use of aqueous thiol-containing media results in removing any oxide by electrochemical reduction, accelerated monolayer formation under electrochemical control, and investigating SAMs surface coverage and monolayer integrity by voltammetry. In this work, we study the influence of different factors on self-assembly process such as the surface pretreatment, adsorption time, the presence of dissolved oxygen, solution pH, and potential cycling on polycrystalline cobalt microelectrode from aqueous 0.1 M NaClO4 solutions of 0.1 mM OT. We obtain the high-quality self-assembled monolayers which are stable in wide range of potentials and show blocking characteristics toward the following Faradaic processes: Co surface oxidation and O2 and H+ reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1169

    Article  CAS  Google Scholar 

  2. Petta JR, Slater SK, Ralph DC (2004) Spin-dependent transport in molecular tunnel junctions. Phys Rev Lett 93(13):136601

    Article  CAS  Google Scholar 

  3. Oyamatsu D, Kuwabata S, Yoneyama H (1999) Underpotential deposition behavior of metals onto gold electrodes coated with self-assembled monolayers of alkanethiols. J Electroanal Chem 473:59–67

    Article  CAS  Google Scholar 

  4. Chaki NR, Vijayamohanan K (2002) Self-assembled monolayers as a tunable platform for biosensor applications. Biosens Bioelectron 17(1-2):1–12

    Article  CAS  Google Scholar 

  5. Iost RM, Crespilho FN (2012) Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics. Biosens Bioelectron 31(1):1–10

    Article  CAS  Google Scholar 

  6. Newton L, Slater T, Clark N, Vijayaraghavan A (2013) Self assembled monolayers (SAMs) on metallic surfaces (gold and graphene) for electronic applications. J Mater Chem C 1:376–393

    Article  CAS  Google Scholar 

  7. Gooding JJ, Mearns F, Yang W, Liu J (2003) Self-assembled monolayers into the 21st century: recent advances and applications) Electroanalysis 15:81–96

    Article  CAS  Google Scholar 

  8. Volmer M, Stratmann M, Viefhaus H (1990) Electrochemical and electron spectroscopic investigations of iron surfaces modified with thiols. Surf Interface Anal 16:278–282

    Article  CAS  Google Scholar 

  9. Mekhalif Z, Riga J, Pireaux J-J, Delhalle J (1997) Self-assembled monolayers of n-dodecanethiol on electrochemically modified polycrystalline nickel surfaces. Langmuir 13:2285–2290

    Article  CAS  Google Scholar 

  10. Devillers S, Hennart A, Delhalle J, Mekhalif Z (2011) 1-Dodecanethiol self-assembled monolayers on cobalt. Langmuir 27(24):14849–14860

    Article  CAS  Google Scholar 

  11. Hoerts PG, Niskala JR, Dai P, Black HT, You W (2008) Comprehensive investigation of self-assembled monolayer formation on ferromagnetic thin film surfaces. J Am Chem Soc 130:9763–9772

    Article  Google Scholar 

  12. Suzuki T, Yamada T, Itaya K (1996) In situ electrochemical scanning tunneling microscopy of Ni(111), Ni(100), and sulfur-modified Ni(100) in acidic solution. J Phys Chem 100:8954–8961

    Article  CAS  Google Scholar 

  13. Bengio S, Fonticelli M, Benitez G, Creus AH, Carro P, Ascolani H, Zampieri G, Blum B, Salvarezza RC (2005) Electrochemical self-assembly of alkanethiolate molecules on Ni(111) and polycrystalline Ni surfaces. J Phys Chem B 109(49):23450–23460

    Article  CAS  Google Scholar 

  14. Sadler JE, Szumski DS, Kierzkowska A, Catarelli SR, Stella K, Nichols RJ, Fonticelli MH, Benitez G, Blum B, Salvarezza RC, Schwarzacher W (2011) Surface functionalization of electro-deposited nickel. Phys Chem Chem Phys13: 1798717993

  15. Yang D-F, Wilde CP, Morin M (1997) Studies of the electrochemical removal and efficient re-formation of a monolayer of hexadecanethiol self-assembled at an au(111) single crystal in aqueous solutions. Langmuir 13:243–249

    Article  CAS  Google Scholar 

  16. Саnaria CA, So J, Maloney JR, Yu CJ, Smith JO, Roukes ML, Fraser SE, Lansford R (2006) Formation and removal of alkanethiolate self-assembled monolayers on gold in aqueous solutions. Lab Chip 6:289–295

    Article  Google Scholar 

  17. Lee JN, Park C, Whitesides G.M (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75: 6544–6554, 23

  18. Zelinskii AG, Bek RY (1985) Solid electrodes with a surface renewed by scraping. Elektrokhimiya 21:62–66

    Google Scholar 

  19. Kletenik YB, Aleksandrova TP (1997) Submicron surface regeneration of solid indicator electrodes. Metallic electrodes. Zh Anal Khim 52:680–682

    CAS  Google Scholar 

  20. Badawy WA, Al-Kharafi FM, Al-Ajmi JR (2000) Electrochemical behavior of cobalt in aqueous solutions of different pH. J Appl Electrochem 30:693–704

    Article  CAS  Google Scholar 

  21. Al-Kharafi FM, Badawy WA, Al-Ajmi JR (1999) Effect of chloride ions on the corrosion and passivation behaviours of cobalt in neutral solutions. Indian J Chem Technol 6:194–201

    CAS  Google Scholar 

  22. Sazou D, Pagitsas M (1991) Polarisation behaviour of a cobalt rotating disk electrode in sulphuric acid solutions in the absence and presence of chloride ions. J Electroanal Chem 304:171–185

    Article  CAS  Google Scholar 

  23. Ovchinnikova SN (2016) Comparative electrochemical study of self-assembly of octanethiol from aqueous and aqueous-ethanol solutions on a gold electrode. Russ J Electrochem 52:260–267

    Article  CAS  Google Scholar 

  24. Byloos M, Al-Maznai H, Morin M (1999) Formation of a self-assembled monolayer via the electrospreading of physisorbed micelles of thiolates. J Phys Chem B 103:6554–6561

    Article  CAS  Google Scholar 

  25. Zhong CJ, Porter MD (1997) Fine structure in the voltammetric desorption curves of alkanethiolate monolayers chemisorbed at gold. J Electroanal Chem 425:147–153

    Article  CAS  Google Scholar 

  26. Wong SS, Porter MD (2000) Origin of the multiple voltammetric desorption waves of long-chain alkanethiolate monolayers chemisorbed on annealed gold electrodes. J Electroanal Chem 485:135–143

    Article  CAS  Google Scholar 

  27. Walczak MM, Aves CA, Lamp BD, Porter MD (1995) Electrochemical and X-ray photoelectron spectroscopic evidence for difference in the binding sites of alcanthiolate monolayers chemisorbed at gold. J Electroanal Chem 396:103–114

    Article  Google Scholar 

  28. Muglari MI, Erbe A, Chen Y, Barth C, Koelsch P, Rohwerder M (2013) Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold. Electrochim Acta 90:17–26

    Article  Google Scholar 

  29. Azzaroni O, Vela ME, Fonticelli M, Benitez G, Carro P, Blum B, Salvarezza RC (2003) Electrodesorption potentials of self-assembled alkanethiolate monolayers on copper electrodes. An experimental and theoretical study J Phys Chem B 107:13446–13454

  30. Azzaroni O, Vela ME, Martin H, Hernandez Creus A, Andreasen D, Salvarezza RC (2001) Electrodesorption kinetics and molecular interactions at negatively charged self-assembled thiol monolayers in electrolyte solutions. Langmuir 17:6647–6654

    Article  CAS  Google Scholar 

  31. Maho A, Denayer J, Delhalle J, Mekhalif Z (2011) Electro-assisted assembly of aliphatic thiol, dithiol and dithiocarboxylic acid monolayers on copper. Electrochim Acta 56:3954–3962

    Article  CAS  Google Scholar 

  32. Boubour E, Lennox RB (2000) Potential-induced defects in n-alkanethiol self-assembled monolayers monitored by impedance spectroscopy. J Phys Chem B 104:9004–9010

    Article  CAS  Google Scholar 

  33. Fontanesi C, Tassinari F, Parenti F, Cohen H, Mondal PC, Kiran V, Giglia A, Pasquali L, Naaman R (2015) New one-step thiol functionalization procedure for Ni by self-assembled monolayers. Langmuir 31(11):3546–3552

    Article  CAS  Google Scholar 

  34. Petrovic Z, Meticos-Hukovic M, Harvey J, Omanovic S (2010) Enhancement of structural and charge-transfer barrier properties of n-alkanethiol layers on a polycrystalline copper surface by electrochemical potentiodynamic polarization. Phys Chem Chem Phys12:6590–6593

  35. Wu S, Chen Z, Qiu Y, Guo X (2012) Corrosion protection of copper by self-assembled monolayers modified in aqueous micellar solution. J Electrochem Soc 159:C277–С282

    Article  CAS  Google Scholar 

  36. Laiho T, Leiro JA (2006) Influence of initial oxygen on the formation of thiol layers. Appl Surf Sci 252:6304–6312

    Article  CAS  Google Scholar 

  37. Meticos-Hukovic M, Babic R, Petrovic Z, Posavec D (2007) Copper protection by a self-assembled monolayer of alkanethiol comparison with benzotriazole. J Electrochem Soc154: C138-С143

  38. Dilimon VS, Denayer J, Delhalle J, Mekhalif Z (2012) Electrochemical and spectroscopic study of the self-assembling mechanism of normal and chelating alkanethiols on copper. Langmuir 28(17):6857–6865

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was carried out within the state assignment to ISSCM SB RAS (project 0301-2019-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana N. Ovchinnikova.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikova, S.N. Self-assembly of octanethiol on oxide-free cobalt electrode from aqueous solution under electrochemical control. J Solid State Electrochem 24, 987–995 (2020). https://doi.org/10.1007/s10008-020-04570-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04570-w

Keywords

Navigation